When perfume is sprayed in a room the particles of perfume diffuse with the particles in the air.
Depression in freezing point (Δ

) =

×m×i,
where,

= cryoscopic constant =

,
m= molality of solution = 0.0085 m
i = van't Hoff factor = 2 (For

)
Thus, (Δ

) = 1.86 X 0.0085 X 2 =

Now, (Δ

) =

- T
Here, T = freezing point of solution

= freezing point of solvent =

Thus, T =

- (Δ

) = -
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer:
CaCO₃(s) → CaO(s) + CO₂(g)
Explanation:
The decomposition reaction always make two compounds from one.
The products always have simpler chemical structure, originated from a determined compound. This can happens spontaneously or by a third party.
A notable example of decomposition is hydrolysis. As for example the case of water, which decomposes and generates oxygen and hydrogen gas
2H₂O (l) → 2 H₂ (g) + O₂ (g)
In this case, the calium carbonate decomposes into CaO and CO₂
These two, are the products of the decomposition.
Of course, the unique reactant is the Calcium Carbonate
The balanced equation is:
CaCO₃(s) → CaO(s) + CO₂(g)
Answer: K only has 1 valence electron. It will leave with only a little effort, leaving behind a positively charged K^+1 atom.
Explanation: A neutral potassium atom has 19 total electrons. But only 1 of them is in potassium's valence shell. Valence shell means the outermost s and p orbitals. Potasium's electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1. The 4s orbital is the only orbital in the 4th energy level. So it has a valency of 1. This means this electron will be the most likely to leave, since it is the lone electron in the oyutermost energy level (4). When that electron leaves, the charge on the atom go up by 1. The atom now has a full valence shell of 3s^2 3p^6, the same as argon, Ar.