Solid- molecules vibrate in place and tightly packed
liquid-molecules fur shape of container and can slide past each other
gas-molecules also fit shape of container and have the most room
Answer: homogeneous
Explanation: The taste of soda water is constant till the end. The carbon dioxide is dissolved homogeneously in soda water.
K:
m=155g
M=39g/mol
n = 155g / 39g/mol ≈ 3,97mol
KNO₃:
m=122g
M=101g/mol
n = 122g/101g/mol = 1,21mol
2K + 10KNO₃ ⇒ 6K₂O + N₂
2mol : 10mol
3,97mol : 1,21mol
limiting reagent
KNO₃ is limiting reagent
Answer:
Carbon atoms in graphite and diamond are arranged in different ways. Hence, the two allotropes of carbon have different physical properties.
Explanation:
Both graphite and diamond are both made of only carbon atoms. However, their physical properties differ from each other. Hence, they are called allotropes. Think about how these carbon atoms are arranged in each of the allotropes.
<h3>Graphite</h3>
In graphite, each carbon atom is bonded to three other carbon atoms. These carbon atoms will be located in the same plane. A chunk of graphite can contain many of these planes.
Each carbon atom has four valence electrons. Three of these electrons will be used in the bonds. The other electron will be delocalized. These electrons would flow between the sheets of carbon atoms. That keeps the sheets separate and allow them to slide on top of each other.
<h3>Diamond</h3>
In diamond, each carbon atom is bonded to four other carbon atoms. These carbon atoms will form a tetrahedral network.
In graphite, there's a significant separation between two adjacent sheets of carbon atoms. The force between the two sheets is rather weak. When a piece of graphite is between two objects that move over one another, the layers in the graphite would also slide over one another. Since the attraction between two adjacent sheets isn't very strong, there wouldn't be much resistance. Hence the graphite acts as a lubricant.
In contrast, most of the carbon atoms in a piece of diamond would be connected to each other. Unlike the sheets in graphite, in a diamond there are almost no moving parts. Also, the forces between neighboring carbon atoms are very strong. When an external force acts on a chunk of diamond, the carbon atoms would barely move. Hence, the structure appears to be very rigid. That gives diamond its abrasive properties.
The best way to balance an equation is to balance one atom at a time.
You start with two Au atoms on the left, so you know the coefficient of Au on the right has to be 2. So at first we get,
Au2S3 + H2 --> 2Au + H2S
Then, notice you have 3 sulfur atoms on the left, so you need three on the right.
Our equation becomes
Au2S3 + H2 --> 2Au + 3H2S
Lastly, we now have six hydrogen atoms on the right, and only two on the left, so we assign a three to the H2 on the left
Au2S3 + 3H2 --> 2Au + 3H2S Is the balanced final equation.