Answer:
10 kg of ice will require more energy than the released when 1 kg of water is frozen because the heat of phase transition increases as the mass increases.
Explanation:
Hello!
In this case, since the melting phase transition occurs when the solid goes to liquid and the freezing one when the liquid goes to solid, we can infer that melting is a process which requires energy to separate the molecules and freezing is a process that releases energy to gather the molecules.
Moreover, since the required energy to melt 1 g of ice is 334 J and the released energy when 1 g of water is frozen to ice is the same 334 J, if we want to melt 10 kg of ice, a higher amount of energy well be required in comparison to the released energy when 1 kg of water freezes, which is about 334000 J for the melting of those 10 kg of ice and only 334 J for the freezing of that 1 kg of water.
Best regards!
Maybe her old shoes had soft worn out bottoms and she slips in them. So her new shoes had more grip than her old ones so they kept her from falling.
Answer:
8.4
Explanation:
-log(4.08x10^-9) = 8.4
- Hope that helped! Please let me know if you need further explanation.
Hey there!
H₃PO₄
Find molar mass.
H: 3 x 1.008 = 3.024
P: 1 x 30.97 = 30.97
O: 4 x 16 = 64
---------------------------------
97.994 grams
The mass of 1 mole of H₃PO₄ is 97.994 grams.
We have 4.5 moles.
97.994 x 4.5 = 440
The mass of 4.5 moles of H₃PO₄ is 440 grams.
Hope this helps!