Answer:
0.5504
Explanation:
We can use Bay's theorem to solve this question
P( No physics career/fail) = P(No Physics career and fail)/P(Fail)
= P( Fail/ No physics career)×P( no physics career)/P( fail)
=
=0.5504
The kinetic energy of this block-spring when the block has a speed (v) is given by K.E = 1/2 × (M + m/3)v².
<h3>What is kinetic energy?</h3>
Kinetic energy can be defined as a form of energy that is possessed by a person due to its motion or change in speed (acceleration).
<h3>How to calculate kinetic energy?</h3>
Mathematically, kinetic energy can be calculated by using this formula:
K.E = 1/2 × mv²
Where:
- K.E represents the kinetic energy.
- v represents the speed or velocity.
Since the mass of a segment of this spring is dm = (m/l) dx, the kinetic energy for each of its segment would be given by:
dK = 1/2 × (dm)Vx²
This ultimately implies that, the kinetic energy of this block-spring when the block has a speed (v) is given by:
K.E = 1/2 × Mv² + 1/2 × ¹∫₀((x²v²/l²)m/ldx
K.E = 1/2 × (M + m/3)v².
Read more on kinetic energy here: brainly.com/question/15848455
#SPJ4
Answer:
178.4 times
Explanation:
We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant on Earth.
is the masses of the 2 objects. and R is the distance between them.
From here we can calculate the ratio of gravitational force between the moon and the sun

We can divide the top and bottom by G and M





So the gravitational force of the sun is about 178 times greater than that of the moon to an object on Earth
Answer: c. displacement
Explanation:
Let's begin by stating clear that motion is the change of position of a body at a certain time. So, during this motion, the body will have a trajectory and a displacement.
In the specific case of the displacement, it is defined as the distance in a straight line between the initial and final position (is a vector magnitude).
Therefore:
Displacement s the the change in position relative to an initial location.