Answer:
tex]2.898\times 10^{-7}\ \text{m}[/tex] ultraviolet region
x-ray region
Explanation:
T = Temperature
b = Constant of proportionality = 
= Wavelength

From Wein's law we have

The wavelength of the radiation will be
and it is in the ultraviolet region.


The wavelength of the radiation will be
and it is in the x-ray region.
Answer:
For the first situation, we first need to find the mass of the second train car.
In order to do that, we apply the conservation of the amount of movement:

and we have as a result:
m2 = 289.6875
For the second situation, also we will apply the conservation of the amount of movement:

and we have as a result:
V = 2.64 (it is moving to the right)
Answer:
a) Acceleration of the car is given as

b) Acceleration of the truck is given as

Explanation:
As we know that there is no external force in the direction of motion of truck and car
So here we can say that the momentum of the system before and after collision must be conserved
So here we will have

now we have


a) For acceleration of car we know that it is rate of change in velocity of car
so we have



b) For acceleration of truck we will find the rate of change in velocity of the truck
so we have



Answer:
Please see below as the answer is self-explanatory.
Explanation:
- The visible range extends roughly from 400 nm (violet) to 700 nm (red).
- Below the violet is the ultra-violet spectrum (with higher energy) and above red, we have the infra-red spectrum.
- The wavelengths in the range of 650 to 690 nm have red as the dominant color.