The smallest particle of an element that still retains the chemical properties of it is an atom.
They move fast enough to overcome the forces of attraction that hold them together, becoming a gas.
ITS THAT :)
Answer:Hence, the bond length in HCl is 125 pm.
Explanation:
Bond length : It is an average distance between the nuclei of two bonded atoms in a molecule.
Also given that bond length is the distance between the centers of two bonded atoms. on the potential energy curve, the bond length is the inter-nuclear distance between the two atoms when the potential energy of the system reaches its lowest value. Beyond this if atoms come closer to each other then their will be repulsion between them.
So, the bond length between the Hydrogen and Chlorine atom in HCl molecule is :

Hence, the bond length in HCl is 125 pm.
<span>
Correct Answer:
Option 3 i.e. 30 g of KI dissolved in 100 g of water.
Reason:
Depression in freezing point is a
colligative property and it is directly proportional to molality of solution.
Molality of solution is mathematically expressed as,
Molality = </span>

<span>
In case of
option 1 and 2, molality of solution is
0.602 m. For
option 3, molality of solution is
1.807 m, while in case of
option 4, molality of solution is
1.205 m.
<u><em>Thus, second solution (option 2) has highest concentration (in terms of molality). Hence, it will have lowest freezing point</em></u></span>
Answer:
Ionization energy is a measure of the difficulty involved in removing an electron from an atom or ion or the tendency of an atom or ion to surrender an electron.
Explanation: