The gravitational force between two object depends on their masses and on their distance.
Since the formula is

If the masses grow, the force also grows. But I'm assuming the two objects are fixed, so you can't enlarge their mass.
So, the only option remaining is to lower their distance: since it sits at the denominator, a smaller value of d results in a bigger value for F.
So, if you reduce the distance between two objects, the gravitational force between them will always result in an increase
Explanation:
Dark Energy. Dark Energy is a hypothetical form of energy that exerts a negative, repulsive pressure, behaving like the opposite of gravity. It has been hypothesised to account for the observational properties of distant type Ia supernovae, which show the universe going through an accelerated period of expansion
Kinetic energy depends on the mass and the speed of a moving object.
If the speeds are equal, then the rick with more mass has more kinetic energy.
Answer:
Magnitude of magnetic field is 1.29 x 10⁻⁴ T
Explanation:
Given :
Current flowing through the wire, I = 16.9 A
Length of wire. L = 0.69 m
Magnetic force experienced by the wire, F = 1.5 x 10⁻³ N
Consider B be the applied magnetic field.
The relation to determine the magnetic force experienced by current carrying wire is:
F = ILBsinθ
Here θ is the angle between magnetic field and current carrying wire.
According to the problem, the magnetic field and current carrying wire are perpendicular to each other, that means θ = 90⁰. So, the above equation becomes:
F = ILB

Substitute the suitable values in the above equation.

B = 1.29 x 10⁻⁴ T
Answer:
The power expended by the car during the acceleration is 116.38KW
Explanation:
Power is a term that defines the rate at which energy is expended whenever work is done.
Power can be given as Force X velocity.
Force can be found using the formula:
F = mass X acceleration.
In this case,
F = 1100kg X 4.6m/s2
F = 5060 N
The final velocity, v of the car can be obtained from this formula:
v = u+ at
U = initial velocity = 0 (since the car started from rest)
a = acceleration = 4.6m/s2
t = time = 5 seconds
v = 0 + 4.6 X 5 = 23 m/s
Therefore, the power expended is 5060N X 23m/s=116,380W
The power expended by the car during the acceleration is 116.38KW