Answer:
5. Is greater than mg, always
Explanation:
If the cone has an inclination of angle β, the sum of forces will be:
x-axis (centripetal axis):
N*sin β = m*ax where ax is the centripetal acceleration
y-axis:
N*cos β - m*g = m*ay where ay is the vertical acceleration. If the block starts falling down, ay will be negative. If the block starts sliding up, ay will be positive. If the block does not move up nor down, ay=0.
Solving for N:

If ay is positive or zero, N will be greater than mg. If ay is negative, N will be less than mg.
If the block is sliding along a horizontal circular path (not up, nor down), ay = 0, so N will always be greater than mg.
A proton is held at rest in a uniform electric field. When it is released, the proton will lose its kinetic energy.
Kinetic energy
The energy an object has as a result of motion is known as kinetic energy in physics. It is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body holds onto the kinetic energy it acquired during its acceleration until its speed changes. The body exerts the same amount of effort when slowing down from its current pace to a condition of rest. Formally, kinetic energy is any term that includes a derivative with respect to time in the Lagrangian of a system.
To learn more about kinetic energy refer here:
brainly.com/question/11301578
#SPJ4
Answer:
See the explanation below
Explanation:
The pressure is defined as the product of the density of the liquid by the gravitational acceleration by the height, and can be easily calculated by means of the following equation.

where:
Ro = density of the fluid [kg/m³]
g = gravity acceleration = 9.81 [m/s²]
h = elevation [m]
In this way we can understand that the greater pressure is achieved by means of the height of the liquid, that is, as long as the fluid has more height, greater pressure will be achieved at the bottom.
Therefore in order of decreasing will be
The largest pressure with the largest height of the liquid, container B. The next is obtained with container D, the next with container A and the lowest pressure with container C.
The pressure decreases as we go from the container B - D - A - C
Yeah, it's every state. Atoms need a certain quanta of energy to jump to each state of energy, and therefore change state depending on how much energy is absorbed and/or released. This applies to all states of matter.