Answer:
Most radio waves have wavelengths between 1 mm and 100 km.
A cooling curve shows A. how the temperature of a substance falls as heat is removed.
Explanation:
<em>Radio waves</em> are the longest of all the waves in the electromagnetic spectrum.
Most have wavelengths between 1 mm and 100 km, although there is no upper limit.
Some radio waves have wavelengths of 10 000 km.
A <em>cooling curve</em> (see image below) shows how the temperature of a substance falls as it is cooled.
In Option E., a decrease in temperature would cause an energy <em>loss</em>.
Options B., C., and D. involve the <em>addition of heat</em>.
<span>Mixing an acid and a base results in neutralization, but the results are potentially dangerous. No matter which acid or base is used, the resulting solution is water and varying types of salt. The process of neutralization often involves the substances heating up when they come together. If the solution heats up too much or too fast, a violent explosion or the creation of harmful or flammable gases is a possibility. This occurs when the chemicals are mixed too quickly, the acid and base are too strong or if there is no available salt to be made in the solution.</span>
Given what we know, we can confirm that hair gel is considered a noncrystalline solid due to Atoms in the hair gel having no particular order or pattern.
<h3>What is a noncrystalline solid?</h3>
- This is a solid whose atoms are amorphous.
- What this means is that the atoms lack a specific order like most solids.
- The most common example of this is glass.
Therefore, given the definition of a noncrystalline solid as a solid whose atoms lack a specified order, we can confirm that the second option which states that "Atoms in the hair gel having no particular order or pattern" is correct.
To learn more about Atoms visit:
brainly.com/question/13981855?referrer=searchResults
Answer:
Increase the pressure of the gas
Explanation:
According to the Pressure law, for a fixed mass of gas, at a constant volume (V), the pressure (P) is directly proportional to the absolute temperature (T).
From the kinetic molecular theory, gases are composed of particles which are in constant motion, colliding with themselves as well as with the walls of their container.
When the temperature of these gas molecules is increased, the molecules acquire more kinetic energy and the rate of collisions increases. Since the container cannot expand, the increase in pressure is due to the increase in collisions between the molecules of the gas as well as with the walls of their container.