Answer:
32000atm
Explanation:
Using Boyle's law equation;
P1V1 = P2V2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (
V2 = final volume (L)
According to the question below:
P1 = 160.0 atm
P2 = 3.0 atm
V1 = 600L
V2 = ?
Using P1V1 = P2V2
160 × 600 = 3 × V2
96000 = 3V2
V2 = 96000/3
V2 = 32000atm
Special Structures in Plant Cells. Most organelles are common to both animal and plant cells. However, plant cells also have features that animal cells do not have: a cell wall, a large central vacuole, and plastids such as chloroplasts.
Answer:
1.51 X 10^23 ions
Explanation:
The number of ions in 17.1 gm of aluminum sulphate Al2 (SO4)3 =….. [Molar mass of Al2 (SO4)3 = 342 gm]
in one molecule of Al2(SO4)3 there are 5 ions 2 aluminum and 3 sulfate ions
in 2 molecules there are 2X5= 10 ions
in 10 molecules there are 10X5 = 50 ions
molar mass of Al2(SO4)3 = (2 X 26.98) +( 3 X 32.1) + (3 X 4 X 16.0 ) =342.gms = 17.1/342 =0.0500 moles
1 mole =6.02 X 10^23 molecules ( see Avogadros number)
0.0500 moles = 0.0500 X 6.02 X 10^23 molecules =
0.301 X 10^23 molecules = 3.01 X 10^22 molecules
We determined that each molecule of Al2(SO4)3 has 5 ions
so 3.01 X10^22 molecules have 5 X 3.01 X 10^22 ions =
15.05 X 10^22 ions = 1.51 X 10^23 ions
The micromoles of mercury(II) iodide : 0.013 μ moles
<h3>Further explanation</h3>
Given
215.0mL of a 6.0x10⁻⁵mmol/L HgI₂
Required
micromoles of HgI₂
Solution
Molarity(M) = moles of solute per liters of solution
Can be formulated :
M = n : V
n = moles
V = volume of solution
V = 215 mL = 0.215 L
so moles of solution :
n = M x V
n = 6.10 mmol/L x 0.215 L
n = 1.312 . 10⁻⁵ mmol
mmol = 10³ micromol
so 1.312 mmol = 1.312.10⁻⁵ x 10³ = 0.01312 micromoles ⇒ 2 sif fig = 0.013 μ moles