Answer:
(CH3)3N(aq)
Explanation:
We have to think of the definition of acid and base in the sense of Brownstead-Lowry. The Brønsted–Lowry theory is an acid–base reaction theory which was proposed independently by Johannes Nicolaus Brønsted and Thomas Martin Lowry in 1923.
A Bronsted-Lowry acid is a chemical species that donates one or more hydrogen ions in a reaction. In contrast, a Bronsted-Lowry base accepts hydrogen ions. When it donates its proton, the acid becomes its conjugate base. A more general approach to the theory is viewing an acid as a proton donor and a base as a proton acceptor.
If we look at the reaction closely, we can see that (CH3)3N(aq) accepted a proton. According to the definition above, we will have to classify (CH3)3N(aq) as a base. Hence the answer.
Answer:
0.667 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 250 mL
Initial concentration (C₁) = 12 M
Final concentration (C₂) = 4.5 M
Final volume (V₂) =?
The final volume of the solution can be obtained by using the dilution formula as illustrated below:
C₁V₁ = C₂V₂
12 × 250 = 4.5 × V₂
3000 = 4.5 × V₂
Divide both side by 4.5
V₂ = 3000 / 4.5
V₂ = 667 mL
Finally, we shall convert 667 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
667 mL = 667 mL × 1 L / 1000 mL
667 mL = 0.667 L
Thus, the volume of the solution prepared is 0.667 L
The 2 trends that are commonly seen in modern concentration
chart , first it is increasing. Since the star of industrial revolution the
amount of co2 increases with time. The second trend is that the temperature
also increases because it is a green house gas which causes the global warming.
The chain reaction is easy to stop. Just add a neuron absorbing material. The Control Rods in rectors can do that You just SCRAM (put the rods all the way in) or add something like Boron and the chain reaction stops.
<span>The problem is the radioactive waste. Those isotopes break down and release heat spontaneously, no neutrons required. The only known way to stop or slow radioactive decay down is to slow time down by moving at relativistic speed or near orbit to a black hole.</span>