<h3>
Answer:</h3>
Lead-205 (Pb-205)
<h3>
Explanation:</h3>
<u>We are given;</u>
We are supposed to identify its product after an alpha decay;
- Polonium-209 has a mass number of 209 and an atomic number of 84.
- When an element undergoes an alpha decay, the mass number decreases by 4 while the atomic number decreases by 2.
- Therefore, when Po-209 undergoes alpha decay it results to the formation of a product with a mass number of 205 and atomic number of 82.
- The product from this decay is Pb-205, because Pb-205 has a mass number of 205 and atomic number 82.
- The equation for the decay is;
²⁰⁹₈₄Po → ²⁰⁵₈₂Pb + ⁴₂He
- Note; An alpha particle is represented by a helium nucleus, ⁴₂He.
<span>In the formation of a solution,
energy is required to overcome the forces of attraction between the solvent
particles. The first step is for the solvent particles to move in order for
solute particles to enter the system. This process is endothermic where energy
flows into the system. The second step is when solute particles must separate
from other solute particles. Lastly, the solute should move between solvent
particles.</span>
They have a mass for the particles
There are no totally elastic collisions
There are intermolecular forces
Answer:
0.23 V.
Explanation:
<em>∵ ΔG° = -RT lnK.</em>
∴ ΔG° = -RTlnK = -(8.314 J/mol)(298 K) ln(7.3 × 10⁷) = - 44.86 x 10³ J/mol.
<em>∵ ΔG° = - nFE°</em>
∴ E° = - ΔG°/nF = - (- 44.86 x 10³ J/mol)/(2 x 96500 s.A/mol) = 0.2324 V ≅ 0.23 V.