<span>Zn⁰ + 2H⁺ ------> Zn²⁺ + H2⁰
H⁺ ion has oxidation number +1.
Zn²⁺ ion has oxidation number +2.
Atom of Zn has electric charge 0, and each hydrogen atom in the molecule H2 have oxidation number 0. So, </span> Zn and each hydrogen atom in H2 have oxidation numbers equals "0".<span>
</span><span>Answer is
D. Zn and each hydrogen atom in H2</span><span>
</span>
If I am correct, yes. As I was told in chemistry, the surface area affects the dissolving of the "sugar". If you put regular Surat in a hot cup of coffee, it will dissolve at a quick pace, but what if you put the same amount of sugar in the same amour of coffee, but the sugar was fine powder? It would dissolve even faster since it has more surface area. So temperature does affect the dissolving. Hope this helps!
<span>N2 + 3H2 → 2 </span>NH3<span> from bal. rxn., 2 moles of </span>NH3<span> are formed per 3 moles of </span>H2, 2:3 moleH2<span>: 3.64 </span>g<span>/ 2 </span>g<span>/mole </span>H2<span>= 1.82 1.82 moles </span>H2<span> x 2/3 x 17
</span>
Answer:
partial pressure of gas D Pd = 15.5 kPa
Explanation:
As per the Dalton's law of partial pressure, in a mixture, pressure exerted by each gas when summed gives the total partial pressure exerted by mixture.
P(Total) = P1+P2+P3.....
Given P(Total) = 35.7 kPa
Partial pressure of gas A Pa = 7.8 kPa
Partial pressure of gas B Pb = 3.7 kPa
Partial pressure of gas C Pc = 8.7 kPa
There, Partial pressure of gas D Pd = P(Total) -(Pa+Pb+Pc)
Pd = 35.7-(7.8+3.7+8.7) = 35.7-20.2 kPa = 15.5 kPa
Therefore, partial pressure of gas D Pd = 15.5 kPa
The correct answer is option B. When the forward and reverse paths of a change occur at the same rate, <span>the system is in equilibrium specifically in dynamic equilibrium.</span> Dynamic equilibrium is
the balance in a process that is continuing. It is achieved in a reaction when
the forward rate of reaction and the backward rate of reaction is at the same
value or equal.