Answer:
emf induced is 0.005445 V and direction is clockwise because we can see area is decrease and so that flux also decrease so using right hand rule direction of current here clockwise
Explanation:
Given data
initial circumference = 165 cm
rate = 12.0 cm/s
magnitude = 0.500 T
tome = 9 sec
to find out
emf induced and direction
solution
we know emf in loop is - d∅/dt ........1
here ∅ = ( BAcosθ)
so we say angle is zero degree and magnetic filed is uniform here so that
emf = - d ( BAcos0) /dt
emf = - B dA /dt ..............2
so area will be
dA/dt = d(πr²) / dt
dA/dt = 2πr dr/dt
we know 2πr = c,
r = c/2π = 165 / 2π
r = 26.27 cm
c is circumference so from equation 2
emf = - B 2πr dr/dt ................3
and
here we find rate of change of radius that is
dr/dt = 12/2π = 1.91
cm/s
so when 9.0s have passed that radius of coil = 26.27 - 191 (9)
radius = 9.08
cm
so now from equation 3 we find emf
emf = - (0.500 ) 2π(9.08
) 1.91 
emf = - 0.005445
and magnitude of emf = 0.005445 V
so
emf induced is 0.005445 V and direction is clockwise because we can see area is decrease and so that flux also decrease so using right hand rule direction of current here clockwise
Answer:
Are you trying to calculate the net force?
If so, it would be 3 N Up.
This is because the 15 N forces from the left and right cancel out, leaving only the upwards 15 N force, and the 12 N force. However, we have to subtract 12 from 15, leaving the final net force to be 3 N Up.
Let me know if this helps!
Answer:

Explanation:
Given,
Red light wavelength = 633 nm
width of slit = 0.320 mm
distance,d = 2.60 m
Condition of first maximum


m = 1


Width of the first minima



Now, width of the central region



Answer:
The stirring allows fresh solvent molecules to continually be in contact with the solute. If it is not stirred, then the water right at the surface of the solute becomes saturated with dissolved sugar molecules, meaning that it is more difficult for the additional solute to dissolve.
Explanation: Help this helps :)))
Answer:
0.312 m/s
Explanation:
Elastic collisions conserve momentum and kinetic energy
The velocity of the center of mass will not change. It continues at
0.00521(443) / 14.80521 = 0.155893... ≈ 0.156 m/s
To conserve kinetic energy we can think of the center of mass (CoM) as an ideal spring returning to each mass that strikes it an identical speed of collision in the opposite direction.
The CoM sees the target approach at - 0.156 and will see it depart at 0.156 m/s
A ground based observer sees the target depart at the velocity of the CoM plus the relative velocity .
v = 0.156 + 0.156 = 0.312 m/s