The wire needs to be sauderwired to be connected back into place to get energy into column so it came function properly again!
Answer:
(a) You can tell that have the same strength because they have attracted the same amount of paper clips.
(b) Iron is used in electromagnets because steel retained magnetic properties after the power was turned off, but in the iron, the paper clips dropped off right away.
To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are. We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.
You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that 1/4 of the wave passes by in 1 second.
There's your frequency . . . 1/4 per second, or 0.25 Hz.
Answer:
Wavelength
Explanation:
Wavelength is the distance between two corresponding consecutive phases of a waveform. It is usually represented by λ in the mathematical expressions.
A continuous propagating wave repeats its wavelength over the distance.
A wave has crest and trough with respect to time and space.
Wave is defined as a disturbance of any parameter repeated in a cyclic manner over the given time.
Answer:
the speed of the waves is 150 cm/s
Explanation:
Given;
frequency of the wave, f = 10 Hz = 10
distance between 4 nodes, L = 15.0 cm
The wavelength (λ) of the wave is calculated as follows;
Node to Node = λ/2
L = 2(Node to Node) = (4 Nodes) = 2 (λ/2) = λ
Thus, λ = L = 15.0 cm
The speed (v) of the wave is calculated as follows;
v = fλ
v = 10 Hz x 15.0 cm
v = 150 cm/s
Therefore, the speed of the waves is 150 cm/s