1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
3 years ago
10

What is the correct measure of an astronomical unit?

Physics
1 answer:
ipn [44]3 years ago
4 0
<span>In our system an astronomical unit is the average distance from the earth to the sun which is about 93 million miles. (92,957,000 miles) This is known as 1 AU.</span>
You might be interested in
Your starship, the Aimless Wanderer,lands on the mysterious planet Mongo. As chief scientist-engineer,you make the following mea
melisa1 [442]

Answer:

m = 1.26*10²⁵ kg.

Explanation:

Assuming that the mass of the stone is much smaller than the mass of the planet, we can get the mass, applying the Universal Law of  Gravitation to both masses, as follows:

Fg = G* ms* mp / rp²

Now, if we apply Newton's 2nd Law to the mass of the stone, we can get the gravitational acceleration, as follows:

Fg = ms*a = ms*g ⇒ g = G*mp / rp²

First of all, we need to get the value of g.

Assuming that this acceleration is constant, we can appy the kinematic equations to this situation.

We know that the stone is thrown upward with an initial velocity vo = 15 m/s.

At the highest point in the trajectory, just before of changing direction, the stone comes momentarily to a stop.

At this point, applying the definition of acceleration, we can write:

vf = vo -g*t ⇒ 0 = vo -gt ⇒ g = vo/t (1)

We have the total time since the stone was thrown upwards, not the one used for the upward trajectory.

It can be showed, using the expression for the displacement (which is the same in both directions) that the time used for going up, it's the same used to go down, so the time that we need to put in (1). is just the half of the total time.

So, replacing in (1) we get the value of g, as follows:

g = 15 m/s / 4.5 s = 3.33 m/s²

Now, we can replace this value in the equation that gives us g based in the Universal Law of Gravitation, as follows:

g=G*mp / rp² (2)

Before solving for mp, however, we need to get the value of the radius of the planet.

Assuming that it's a perfect sphere, we can get this value from the value of the circumference at the planet's equator:

rp = 2*π*rp / 2*π ⇒ rp = 1.0*10⁵ km / 2*π = 15,915 km.

With this value for  rp, we can solve (2) for mp, as follows:

mp= g*rp² / G = 3.33 m/s² * (15,915 km)² / 6,67*10⁻¹¹ N.m²/kg²

mp = 1.26*10²⁵ kg.

8 0
3 years ago
In a fast-pitch softball game the pitcher is impressive to watch, as she delivers a pitch by rapidly whirling her arm around so
svetlana [45]

Answer:

(a). The magnitude of the total acceleration of the ball is 239.97 m/s².

(b). The angle of the total acceleration relative to the radial direction is 11.0°

Explanation:

Given that,

Radius of the circle = 0.681 m

Angular acceleration = 67.7 rad/s²

Angular speed =18.6 rad/s

We need to calculate the centripetal acceleration of the ball

Using formula of centripetal acceleration

a_{c}=\omega^2\times r

Put the value into the formula

a_{c}=(18.6)^2\times0.681

a_{c}=235.5\ m/s^2

We need to calculate the tangential acceleration of the ball

Using formula of tangential acceleration

a_{t}=r\alpha

Put the value into the formula

a_{t}=0.681\times67.7

a_{t}=46.104\ m/s^2

(a). We need to calculate the magnitude of the total acceleration of the ball

Using formula of total acceleration

a=\sqrt{a_{c}^2+a_{t}^2}

Put the value into the formula

a=\sqrt{(235.5)^2+(46.104)^2}

a=239.97\ m/s^2

(b). We need to calculate the angle of the total acceleration relative to the radial direction

Using formula of the direction

\theat=\tan^{-1}(\dfrac{a_{t}}{a_{c}})

Put the value into the formula

\theta=\tan^{-1}(\dfrac{46.104}{235.5})

\theta=11.0^{\circ}

Hence, (a). The magnitude of the total acceleration of the ball is 239.97 m/s².

(b). The angle of the total acceleration relative to the radial direction is 11.0°

5 0
3 years ago
The acceleration due to gravity is lower on the Moon than on Earth. Which of the following is true about the mass and weight of
Naya [18.7K]

Mass is the same, weight is less

<h3>What is the Weight and mass on Moon ?</h3>

As we know that the mass of the object is the measurement of the quantity of the matter that is present in it

So here we can say that if the mass of the object is m then its total quantity of the matter that is present in it is given as

mass = (density) × (volume)

Now for the weight of the object is defined as the force of gravity due to planet

Fg = mg

so the weight of the object is depending on the acceleration due to gravity of the planet

As we know that the gravity of moon is smaller than the gravity of the earth so here weight on the moon will be smaller than the weight on the Earth

Learn more about Weight on Moon here:

brainly.com/question/4080619

#SPJ4

3 0
2 years ago
A 0.111 kg hockey puck moving at 55 m/s is caught by a 80 kg goalie at rest. With what speed does the goalie slide on the (frict
Andrews [41]

Answer: 0.076 m/s

Explanation:

Momentum is conserved:

m v = (m + M) V

(0.111 kg) (55 m/s) = (0.111 kg + 80. kg) V

V = 0.076 m/s

After catching the puck, the goalie slides at 0.076 m/s.

6 0
3 years ago
Which statement accurately describes the illustration?
kvv77 [185]
The answer is B. I hope this helps! :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • In the flow past a compression corner, the upstream Mach number and pressure are 3.5 and 1 atm, respectively. Downstream of the
    9·1 answer
  • Define the problem. Look around your house or outside. Is there anything that you're wondering about or have questions about?
    11·1 answer
  • Two application of heat energy​
    12·1 answer
  • An aluminum rod 17.400 cm long at 20°C is heated to 100°C. What is its new length? Aluminum has a linear expansion coefficient o
    7·1 answer
  • A 5.00-kg block of ice is sliding across a frozen pond at 2.00 m/s. A 7.60-N force is applied in the direction of motion. After
    14·1 answer
  • TRUE OR FALSE : Boyle’s law states that, as the pressure of a gas increases, the volume decreases.
    10·1 answer
  • In your lab group you combined salt and water. Then you compared what happens when an egg is placed in tap water versus salt wat
    7·2 answers
  • What are two ways you can increase power by climbing the stairs?
    9·1 answer
  • SOS HELP ME
    12·1 answer
  • Would you say the rate if cell growth is increasing or decreasing explain.​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!