Since
<span>Vf^2 = 2*a*S </span>
<span>Given S=3.6m, thus </span>
<span>a = Vf^2/(2*3.6) </span>
<span>a = Vf^2/7.2 </span>
<span>Let d be the distance along the slope at which the velocity is 0.5Vf, then </span>
<span>(0.5Vf)^2 = 2*a*d </span>
<span>or </span>
<span>d = (0.5*Vf)^2/(2*a) </span>
<span>with a = Vf^2/7.2, we have </span>
<span>d = 0.9 m</span>
Answer:
Explanation:
Let the tension in the cord be T₁ and T₂ .
for motion of block placed on horizontal table
T₁ = m a , a is acceleration of the whole system .
for motion of hanging bucket of mass m
mg - T₂ = ma
adding the two equation
mg + T₁- T₂ = 2ma
for rotational motion of the pulley
torque = moment of inertia x angular acceleration
(T₂ - T₁) R = I x α , I is moment of inertia of pulley , α is angular acceleration .
(mg - 2ma ) R = I x α
(mg - 2ma ) R = I x a / R
(mg - 2ma ) R² = I x a
mgR² = 2ma R² + I x a
a = mgR² / (2m R² + I )
Since body moves by distance d in time T
d = 1/2 a T²
a = 2d / T²
mgR² / (2m R² + I ) = 2d / T²
mgR²T² = 2d x (2m R² + I )
mgR²T² - 4dm R² = 2dI
m R² ( gT² - 4d ) = 2dI
I = m R² ( gT² - 4d ) ] / 2d .
Answer:
A) The ball will roll forever in a straight path.
Answer:
counter question if you get out the shower clean then how does your towel get dirty?
Na is in the first column on the periodic table so therefore it would have 1 valence electron
D 1