Answer:
We kindly invite you to read carefully the explanation and check the image attached below.
Explanation:
According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:
(1)
Where:
- Initial velocity, measured in meters per second.
- Final velocity, measured in meters per second.
- Acceleration, measured in meters per square second.
- Initial time, measured in seconds.
- Final time, measured in seconds.
Now we obtain the kinematic equations for thrust and free fall stages:
Thrust (
,
,
,
)
(2)
Free fall (
,
,
,
)
(3)
Now we created the graph speed-time, which can be seen below.
Consider a long train moving at speed v. Now consider a passenger throwing a ball inside this train, towards the back of the train, with same velocity v (but in the opposite direction of the train movement).
- A passenger inside the train will see the ball moving with speed v
- For an observer outside the train, however, the ball will appear as still. In fact, for him the ball will have a speed v (given by the movement of the train) -v (velocity of the ball but moving in the opposite direction), so the net velocity will be v+(-v)=0.
A solid, liquid, or gas or plasma. Which I think it is. Check though.
True the magnitude is the velocity of speed