The acceleration of the first block (4 kg) is -9.8 m/s².
The given parameters:
- <em>Mass of the first block, m₁ = 4.0 kg</em>
- <em>Mass of the second block, m₂ = 2.0 kg</em>
The net force on the system of the two blocks is calculated as follows;

where;
- <em>T </em><em>is the tension in the connecting string due weight of the first block</em>

Thus, the acceleration of the first block (4 kg) is -9.8 m/s².
Learn more about net force on two connected blocks here: brainly.com/question/13539944
According to the second law of thermodynamics,
the answer is
<span>4. The entropy of the universe is increasing. </span>
Answer:
i like how your computer thing is red, mine is orange bc i have a haikyuu wallpaper
Explanation:
To solve this problem it is necessary to apply the rules and concepts related to logarithmic operations.
From the definition of logarithm we know that,

In this way for the given example we have that a logarithm with base 10 expressed in the problem can be represented as,

We can express this also as,

By properties of the logarithms we know that the logarithm of a power of a number is equal to the product between the exponent of the power and the logarithm of the number.
So this can be expressed as

Since the definition of the base logarithm 10 of 10 is equal to 1 then

The value of the given logarithm is equal to 6
Answer:
Juno scientific payload includes:
- A gravity/radio science system (Gravity Science)
- A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- A vector magnetometer (MAG)
- Plasma and energetic particle detectors (JADE and JEDI)
- A radio/plasma wave experiment (Waves)
- An ultraviolet imager/spectrometer (UVS)
- An infrared imager/spectrometer (JIRAM)
Explanation:
Each mission of NASA has a specific set of instruments that it uses to perform scientific experiments on the desired heavenly body. In case of Juno, the mission for Jupiter has a series of instruments that would study domains of gravitational forces, magnetic effect, particle detection, radiation detection, UV/IR imaging, and plasma experiments.