Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
Note: This question is incomplete and lacks very important data to solve this question. But I have found the similar question which shows the profiles about which question discusses. Using the data from that question, I have solved the question.
a) We need to find the major species from A to F.
Major Species at A:
1. 
Major Species at B:
1. 
2. 
Major Species at C:
1. 
Major Species at D:
1. 
2. 
Major Species at E:
1. 
Major Species at F:
1. 
b) pH calculation:
At Halfway point B:
pH = pK
+ log[
]/[H
]
pH = pK
= 6.35
Similarly, at halfway point D.
At point D,
pH = pK
+ log [H
]/[H2
]
pH = pK
= 10.33
Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M
One correct thging is that there are the same amount of positive and negative atoms
An acid can be defined as a proton donor.