Answer:
Shorter
Explanation:
As a wavelength increases in size, its frequency, and energy (E) decrease. From these equations, you may realize that as the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer. There are two basic types of waves: mechanical and electromagnetic.
<h2>Answer:</h2>
The mass of the system will remain the same if there is no conversion of mass to energy in the reaction.
<h3>Explanation:</h3>
- If the system is closed, then according to the law of mass conservation the mass of the reaction system will remain the same.
- <u><em>Law of conservation of the mass: In simple words, it is described as the mass of a closed system can never be changed, it may transfer from one form to another or change into energy.</em></u>
- But if the reaction involves energy transfer like heat or light production, in this case, the mass can be changed.
Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.