The balanced chemical reaction is written as:
<span>2K + F2 ---> 2 KF
We are given the amount of potassium metal to be used in the reaction. This will be the starting point for the calculation. We do as follows:
23.5 g K ( 1 mol / 39.1 g ) ( 1 mol F2/2 mol K ) ( 22.4 L / 1 mol ) = 13.46 L F2
</span>
The answer is 3 It is a body of knowledge gained using inquiry and experimentation. Hope this helped!
Answer: Finding the [H3O+] and pH of Strong and Weak Acid Solutions The larger the Ka, the stronger the acid and the higher the H+ concentration at equilibrium. hydronium ion, H3O+, 1.0, 0.00, H2O, 1.0×10−14, 14.00.
Explanation:The hydrogen ion in aqueous solution is no more than a proton, a bare ... the interaction between H+ and H2O .
Answer:
0.26g of NaCl is the maximum mass that could be produced
Explanation:
Based on the reaction:
HCl + NaOH → NaCl + H₂O
<em>Where 1 mol of HCl reacts per mol of NaOH to produce 1 mol of NaCl</em>
<em />
To solve this question we need to find <em>limiting reactant. </em>The moles of limiting reactant = Moles of NaCl produced:
<em>Moles HCl -Molar mass: 36.46g/mol-:</em>
0.365g HCl * (1mol / 36.46g) = 0.010 moles HCl
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
0.18g NaOH * (1mol / 40g) = 0.0045 moles NaOH
As the reaction is 1:1 and moles NaOH < moles HCl, limiting reactant is NaOH and maximum moles produced of NaCl are 0.0045 moles.
The mass of NaCl is:
<em>Mass NaCl -Molar mass: 58.44g/mol-:</em>
0.0045 moles * (58.44g/mol) =
<h3>0.26g of NaCl is the maximum mass that could be produced</h3>