Leaving a basketball out in the cold weather. When a basketball if left in a cold garage or outside during the cold months, it loses its air inside (or volume).
The first step is to balance the equation:
<span>C3H8 + 5O2 ---> 3CO2 + 4H2O
Check the balance
element left side right side
C 3 3
H 8 4*2 = 8
O 5*2=10 3*2 + 4 = 10
Then you have the molar ratios:
3 mol C3H8 : 5 mol O2 : 3 mol CO2 : 4 mol H2O
Now you have 40 moles of O2 so you make the proportion:
40.0 mol O2 * [3 mol CO2 / 5 mol O2] = 24.0 mol CO2.
Answer: option D. 24.0 mol CO2
</span>
Answer:
- <em>The solution expected to contain the greatest number of solute particles is: </em><u>A) 1 L of 1.0 M NaCl</u>
Explanation:
The number of particles is calculated as:
a) <u>For Ionic compounds</u>:
- molarity × volume in liters × number of ions per unit formula.
b) <u>For covalent compounds</u>:
- molarity × volume in liters
The difference is a factor which is the number of particles resulting from the dissociation or ionization of one mole of the ionic compound.
So, calling M the molarity, you can write:
- # of particles = M × liters × factor
This table show the calculations for the four solutions from the list of choices:
Compound kind Particles in solution Molarity # of particles
(dissociation) (M) in 1 liter
A) NaCl ionic ions Na⁺ and Cl⁻ 1.0 1.0 × 1 × 2 = 2
B) NaCl ionic ions Na⁺ anc Cl⁻ 0.5 0.5 × 1 × 2 = 1
C) Glucose covalent molecules 0.5 0.5 × 1 × 1 = 0.5
D) Glucose covalent molecules 1.0 1.0 × 1 × 1 = 1
Therefore, the rank in increasing number of particles is for the list of solutions given is: C < B = D < A, which means that the solution expected to contain the greatest number of solute particles is the solution A) 1 L of 1.0 M NaCl.
Below are the choices that can be found from other sources:
<span>A) elements
B) ions
C) molecules
D) neutrons
the answer is ions.
</span>A Star<span> and hence our Sun, is an almost entirely ionized ball of </span>plasma<span>, consisting of electrons and ions, in which there is hardly any gas (neutral atoms). The movement of the </span>plasma<span> produces strong magnetic fields and corresponding electric currents.</span>