Answer:
The molar mass of the gas is 36.25 g/mol.
Explanation:
- To solve this problem, we can use the mathematical relation:
ν = 
Where, ν is the speed of light in a gas <em>(ν = 449 m/s)</em>,
R is the universal gas constant <em>(R = 8.314 J/mol.K)</em>,
T is the temperature of the gas in Kelvin <em>(T = 20 °C + 273 = 293 K)</em>,
M is the molar mass of the gas in <em>(Kg/mol)</em>.
ν = 
(449 m/s) = √ (3(8.314 J/mol.K) (293 K) / M,
<em>by squaring the two sides:</em>
(449 m/s)² = (3 (8.314 J/mol.K) (293 K)) / M,
∴ M = (3 (8.314 J/mol.K) (293 K) / (449 m/s)² = 7308.006 / 201601 = 0.03625 Kg/mol.
<em>∴ The molar mass of the gas is 36.25 g/mol.</em>
The Sun, Moon, and stars have helped
people for thousands of years. When you look
into the sky, you will notice that they follow
certain patterns. This happens most of the
time, but not all of the time. Since most
patterns repeat over and over, they have
helped us keep track of time. These patterns
have also helped us make calendars.
Making calendars was a difficult task. Our ancestors had to decide on the length of a year.
Also, they had to decide on the length of a day. As you know a day takes 24
hours. That is the time that Earth takes to rotate once on its axis. A year is longer and
takes 365 days. This length of time is related to the time that it takes for Earth to go
around the Sun. However, this is not exactly true. Earth’s trip takes 365 days – plus a
fraction of another day. This is what complicates our calendar. We have been able to
solve this problem by adding an extra day in the month of February. Most often, you will
see that February has 28 days. Every four years, February has one extra day. During this
year we end up with 29 days in this month. When this happens, the year is called a Leap
Year. It helps us keep our calendar in order.
Deciding on the length of a month has also been a challenge. Some cultures around the
world have used a lunar calendar. A lunar calendar is based on the Moon’s cycle. The
Moon takes 29 and one-half days to complete one cycle. Then things got a lot harder.
Different cultures start their months at a different time of the Moon’s cycle. For example,
the Hebrew and Islamic calendars start their months when a crescent moon is seen in the
sky. The Chinese start their new months at the new moon phase. These differences have
made it harder for cultures to communicate. Trading with one another has also been hard
for this reason.
As time went by, most countries began to use the same calendar. When this happened in
the twentieth century, trade and communication became a lot easier. Some countries
decided to drop thirteen days from their calendar. This is because their old way of
counting did not match up with the new way.
England had problems with the calendar back in the 1500s. The English decided to divide
their calendar into months. Each month had four weeks. By doing this, one week ended
up being longer than seven days. Also, this resulted in thirteen months to a yea
A redox reaction --> a reaction whereby oxidation & reduction occurs
Reduction:
Charge of Cl2 = 0
Charge of Cl- in NaCl = -1
Hence, since charge of Cl2 decreased from 0 in Cl2 to -1 in NaCl, reduction occured.
Oxidation:
Charge of Na = 0
Charge of Na+ in NaCl = +1
Hence, since charge of Na increased from 0 in Na to +1 in NaCl, oxidation occured.
Since both oxidation & reduction occured in the reaction, it is a redox reaction.
Answer:
number of moles of CO2 is 0.054
number of moles of CO is 0.107
number of moles of O2 remaining is 0.01 mole
mole fraction of CO is 0.63
Explanation:
Firstly, we write the equation of reaction;
3C(s) +2O2(g) → CO2(g) +2CO(g)
Now, we proceed.
From the written equation, we can deduce that
3 mol C = 2 mol O2 = 1 mol CO2 = 2 mol CO
No of mol of C reacted = 0.161 mol
limiting reactant according to the question is Carbon
a. no of mol of CO2 formed = 0.161*1/3 = 0.054 moles ( no of moles of CO2 formed is one-third of no of moles of carbon reacted. This is obtainable from their mole ratio 1:3)
b. no of mol of CO formed = 0.161*2/3 = 0.107 mol
c. no of mol of O2 remaining = 0.117 - (0.151*2/3) = 0.117-0.107 = 0.01 mole
d. mole fraction of CO = no of mol of CO/Total number of moles
= 0.107/(0.107+0.054+0.01)
= 0.625730994152 which is approximately 0.63