Answer is Mr and S as MgS ..
The mass for of aluminum that is produced by the decomposition of 5.0 Kg Al2O3 is 2647 g or 2.647 Kg
calculation
Write the equation for decomposition of Al2O3
Al2O3 = 2Al + 3 O2
find the moles of Al2O3 = mass/molar mass
convert 5 Kg to g = 5 x1000 = 5000 grams
molar mass of Al2O3 = 27 x2 + 16 x3 = 102 g/mol
moles =5000 g/ 102 g/mol = 49.0196 moles
by use of mole ratio between Al2O3 to Al which is 1:2 the moles of Al = 49.0196 x2 =98.0392 moles
mass of Al = moles x molar mass
= 98.0392 moles x 27g/mol = 2647 grams or 2647/1000 = 2.647 Kg
3rd one:
it is very reactive because it does not have a full Valence shell.
this is because it's in group 1 so it has one electron in its outer shell, and it wants to have a full outer shell ( which it can gain by losing the electron in a reaction).
Hope this helps :)
Explanation:
“The isomers butane and methyl propane have the same molecular formula and different properties”, this is because structural isomers usually have different properties to their parent.
Answer:
The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol
Explanation:
The ∆H (heat of reaction) of the combustion reaction is the heat that accompanies the entire reaction. For its calculation you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient (number of molecules of each compound that participates in the reaction) and finally subtract them:
Enthalpy of the reaction= ΔH = ∑Hproducts - ∑Hreactants
In this case, you have: 2 NOCl(g) → 2 NO(g) + Cl₂(g)
So, ΔH=
Knowing:
- ΔH= 75.5 kJ/mol
= 90.25 kJ/mol
= 0 (For the formation of one mole of a pure element the heat of formation is 0, in this caseyou have as a pure compound the chlorine Cl₂)
=?
Replacing:
75.5 kJ/mol=2* 90.25 kJ/mol + 0 - 
Solving
-
=75.5 kJ/mol - 2*90.25 kJ/mol
-
=-105 kJ/mol
=105 kJ/mol
<u><em>The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol</em></u>