Answer:
A compound contains atoms of different elements chemically combined together in a fixed ratio. An element is a pure chemical substance made of same type of atom. Compounds contain different elements in a fixed ratio arranged in a defined manner through chemical bonds. They contain only one type of molecule.
Answer:
0.75 g/cm³
Explanation:
Given data:
Mass of wooden block = 180 g
Length of block = 10 cm
Width of block = 6 cm
Height or thickness = 4 cm
Density of block = ?
Solution:
Volume of block = height × length × width
Volume of block = 4 cm × 10 cm× 6 cm
Volume of block = 240 cm³
Density of block:
density = mass/ volume
d = 180 g/ 240 cm³
d = 0.75 g/cm³
Its been awhile since I've dabbled in chemistry, but i do know that A isnt the answer because the question says solution, not mixture. This looks somewhat like a trick question, it says individual components, so the answer would be C. This is because the individual components do react to form a compound. B and D would be true if it didnt say individual components, so the question is basically focusing on only one ingredient, not the whole solution. Answer: C
Answer:
Buffer B has the highest buffer capacity.
Buffer C has the lowest buffer capacity.
Explanation:
An effective weak acid-conjugate base buffer should have pH equal to
of the weak acid. For buffers with the same pH, higher the concentrations of the components in a buffer, higher will the buffer capacity.
Acetic acid is a weak acid and
is the conjugate base So, all the given buffers are weak acid-conjugate base buffers. The pH of these buffers are expressed as (Henderson-Hasselbalch):
![pH=pK_{a}(CH_{3}COOH)+log\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28CH_%7B3%7DCOOH%29%2Blog%5Cfrac%7B%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)

Buffer A: 
Buffer B: 
Buffer C: 
So, both buffer A and buffer B has same pH value which is also equal to
. Buffer B has higher concentrations of the components as compared to buffer A, Hence, buffer B has the highest buffer capacity.
The pH of buffer C is far away from
. Therefore, buffer C has the lowest buffer capacity.