1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliya0001 [1]
2 years ago
11

What is the easiest character to play in smash personally I like cloud if anybody can tell me any combos for him I’ll give brain

liest
Engineering
2 answers:
Alina [70]2 years ago
8 0

But to answer your question on easy character i say rob he has a very good recovery good down throw good combos to get u from zero to 60 and has his spin to win plus laser and disk he can zone attack and if u side b someone off stage you can try to side b them again and it will kill thats if u land it though

Helga [31]2 years ago
5 0

Answer: Go the OG route pick classic Mario.

Explanation: Just cause

You might be interested in
Please help is due tonight
Kipish [7]

Answer:

tHE answer is b

Explanation:

7 0
3 years ago
Read 2 more answers
Hot carbon dioxide exhaust gas at 1 atm is being cooled by flat plates. The gas at 220 °C flows in parallel over the upper and l
sergeinik [125]

The local convection heat transfer coefficient at 1 m from the leading edge is  0.44 \frac{W}{m^{2} \times K} ,  the average convection heat transfer coefficient over the entire plate is  0.293 \frac{W}{m^{2} \times K}and the total heat flux transfer to the plate is 61.6 KJ.

Explanation:

It is case of heat and mass transfer in which due to temperature difference between gas  and surface. Further temperature  boundary layer will developed on flat plate in longitudinal direction.  

Hot carbon dioxide exhaust gas

physical properties

r= 1.05 \frac{kg}{m^{3}}

c_p = 1.02 \frac{kJ}{Kg \times K}

m= 231 \times 10^{7}  \frac{N \times s }{m^2}

υ = 21.8 \times 10^{6}  \frac{m^2}{s}

k = 32.5 \times 10^{3} \frac{W}{m \times K}

\alpha = 30.1 \times 10^{6} \frac{m^{2}}{s}

Pr = 0.725

Apart from these other data arr given below,

v= 3 \frac{m}{s}  \\ p= 1 atm \\ L_c = 1.5m \\T_g= 220 C \\ T_s = 80 C

To find the local convection heat transfer coefficient at 1 m from the leading edge, we use correlation used for laminar flow over flat plate,

Nu = \frac{ h \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

where h= Average heat transfer coefficient

           L= Length of a plate

           k= Thermal Conductivity of carbon dioxide

           Re = Reynold's Number

           Pr  = Prandtle Number

(a) Convection heat transfer coefficient at 1 m from the leading edge

    is referred as local convection heat transfer coefficient.

   

   To find convection heat transfer coefficient at 1 m from leading edge,

  Nu = \frac{ h_local \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

  Here, first we have to find Re and Pr,

   Re = \frac{r \times v \times L}{m}

   Re = \frac{1.0594 \times 3 \times 1}{231 \times 10^{7}}

   Re = 20.63 \times  10^{-10}

   Pr number is take from physical property data and Pr is 0.725.

   Putting value of Re and Pr in main equation,

   we get

   Nu = \frac{ h_local \times 1 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   = 32.5 \times 10^{3} \times  0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   =  0.44 \frac{W}{m^{2} \times K}

(b)  To find average convection heat transfer coefficient,

      it can be find out as case (a), only difference is that instead of L=1 m,        L=1.5 m would come,  

   Therefore,

    Nu = \frac{ h \times 1.5 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    Finally,

      h  = \frac{0.44}{1.5}

      h  = 0.293 \frac{W}{m^{2} \times K}

(C) Total heat flux transfer to the plate is found out by,

     Q = h \times (T_g - T_s)

     Q = 0.293 \times (220-80) \\ Q= 0.293 \times 140  \\ Q= 61.6 KJ

     

     

   

   

     

   

     

   

   

 

   

   

   

   

8 0
2 years ago
Define Mechanism and mechanics.​
aivan3 [116]

mechanism, in mechanical construction, the means employed to transmit and modify motion in a machine or any assemblage of mechanical parts.

6 0
2 years ago
Read 2 more answers
Experimental Design Application Production engineers wish to find the optimal process for etching circuit boards quickly. They c
Veseljchak [2.6K]

Answer:

Hello your question is incomplete attached below is the missing part and answer

options :

Effect A

Effect B

Effect C

Effect D

Effect AB

Effect AC

Effect AD

Effect BC

Effect BD

Effect CD

Answer :

A  = significant

 B  = significant

C  = Non-significant

D  = Non-significant

AB  = Non-significant

AC  = significant

AD  = Non-significant

BC  = Non-significant

 BD  = Non-significant

 CD = Non-significant

Explanation:

The dependent variable here is Time

Effect of A  = significant

Effect of B  = significant

Effect of C  = Non-significant

Effect of D  = Non-significant

Effect of AB  = Non-significant

Effect of AC  = significant

Effect of AD  = Non-significant

Effect of BC  = Non-significant

Effect of BD  = Non-significant

Effect of CD = Non-significant

8 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
2 years ago
Other questions:
  • Air enters a compressor operating at steady state with pressure of 90 kPa, at a temperature of 350 K, and a volumetric flow rate
    13·1 answer
  • Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1200 K to a cold reservoir at 600 K. Calculate the
    15·1 answer
  • A capillary tube is immersed vertically in a water container. Knowing that water starts to evaporate when the pressure drops bel
    11·1 answer
  • Give a reason why fighter aircraft use mid-wing design.
    11·1 answer
  • The spring has a stiffness k = 200 N>m and an unstretched length of 0.5 m. If it is attached to the 3-kg smooth collar and th
    12·1 answer
  • An experimental arrangement for measuring the thermal conductivity of solid materials involves the use of two long rods that are
    8·1 answer
  • PLEASE HELP ASAP!!! Thanks
    11·1 answer
  • Oliver is designing a new children’s slide to increase the speed at which a child can descend. His first design involved steel b
    15·1 answer
  • Resistors of 150 Ω and 100 Ω are connected in parallel. What is their equivalent resistance?
    13·1 answer
  • The project's criteria.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!