Answer:
a) V(t) = Ldi(t)/dt
b) If current is constant, V = 0
Explanation:
a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.
If V represents the Voltage across the inductor
and i(t) represents the current across the inductor in time, t.
V(t) ∝ di(t)/dt
Introducing a proportionality constant,L, which is the inductance of the inductor
The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.
V(t) = Ldi(t)/dt ..................................................(1)
b) If the current flowing through the inductor is constant i.e. does not vary with time
di(t)/dt = 0 and hence the general equation (1) above becomes
V(t) = 0
Answer: double click at the top of the page. Or you can also go to home file and click add heading.
Explanation:
Answer:
The time required is 10.078 hours or 605 min
Explanation:
The formula to apply here is ;
K=(d²-d²₀ )/t
where t is time in hours
d is grain diameter to be achieved after heating in mm
d₀ is the grain diameter before heating in mm
Given
d=5.5 × 10^-2 mm
d₀=2.4 × 10^-2 mm
t₁= 500 min = 500/60 =25/3 hrs
t₂=?
n=2.2
First find K
K=(d²-d²₀ )/t₁
K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3
K=(0.051²-0.024²) ÷25/2
K=0.000243 mm²/h
Re-arrange equation for K ,to get the equation for d as;
d=√(d₀²+ Kt) where now t=t₂

It is important because now a days we all need help from engineers