Split the operation in two parts. Part A) constant acceleration 58.8m/s^2, Part B) free fall.
Part A)
Height reached, y = a*[t^2] / 2 = 58.8 m/s^2 * [7.00 s]^2 / 2 = 1440.6 m
Now you need the final speed to use it as initial speed of the next part.
Vf = Vo + at = 0 + 58.8m/s^2 * 7.00 s = 411.6 m/s
Part B) Free fall
Maximum height, y max ==> Vf = 0
Vf = Vo - gt ==> t = [Vo - Vf]/g = 411.6 m/s / 9.8 m/s^2 = 42 s
ymax = yo + Vo*t - g[t^2] / 2
ymax = 1440.6 m + 411.6m/s * 42 s - 9.8m/s^2 * [42s]^2 /2
ymax = 1440.6 m + 17287.2m - 8643.6m = 10084.2 m
Answer: ymax = 10084.2m
They both involve atoms. Other than that they're the exact opposite of each other. Fusion is putting atoms together. Fission is taking them apart.
Answer:
Mercury's natural state is where the atoms are close to each other but are still free to pass by each other. In which state(s) could mercury naturally exist?
Liquid is the answer
Explanation:
Gravity slows the upward speed of any rising object by 9.8 m/s every second.
If the ball is tossed upward at 20 m/s, then it's at the top of its arc and its speed has dwindled to zero in (20/9.8) = 2.04 seconds.
During that time, its starting speed is 20 m/s and its ending speed is zero, so its AVERAGE speed all the way up is (1/2) (20 + 0) = 10 m/s .
Sailing upward for 2.04 seconds at an average speed of 10 m/s, the ball rises to (2.04 x 10) = <em>20.4 meters.</em>