Answer:
18m/s^2
Explanation:
Vf = Vi + at
t = distance/ average velocity
(120 + 0)/2 = 60 (average velocity)
400m/60m/s = 20/3 s
insert into first equation:
120 = 0 + a(20/3)
360 = 20a
18 = a
HOPE THIS HELPS!!!
The answer is 50% of the paper production
Answer:
0.130
Explanation:
From the given data, the coefficient of static friction for each trial are:
1. 0.053
2. 0.081
3. 0.118
4. 0.149
5. 0.180
6. 0.198
The sum of the coefficient of static friction = 0.053 + 0.081 + 0.118 + 0.149 + 0.180 + 0.198
= 0.779
So that;
the average coefficient of static friction = 
= 
= 0.12983
The average coefficient of static friction is 0.130
Answer:
60 Ω
Explanation:
R(com) = 15 Ω
1/R(com) = 1/R1 + 1/R2 + 1/R3 ..... + 1/Rn
1/15 = 1/20 + 1/R2
1/R2 = 1/15 - 1/20
1/R2 = (4 - 3) / 60
1/R2 = 1/60
R2 = 60 Ω
así, la combinada de resistencia necesaria es 60 Ω
It's dependent on the mass. You can fimd the force needed using the formula F = ma. Where F is force, m is mass of the cart and a is the acceleration (0.9m/s^2). The heavier it is the more force you are going to need. Remember unit of force is N