Meters Micrometers centimeters millimeters
The right answer is
all of the above
good luck
Answer:
3.135 kN/C
Explanation:
The electric field on the axis of a charged ring with radius R and distance z from the axis is E = qz/{4πε₀[√(z² + R²)]³}
Given that R = 58 cm = 0.58 m, z = 116 cm = 1.16m, q = total charge on ring = λl where λ = charge density on ring = 180 nC/m = 180 × 10⁻⁹ C/m and l = length of ring = 2πR. So q = λl = λ2πR = 180 × 10⁻⁹ C/m × 2π(0.58 m) = 208.8π × 10⁻⁹ C and ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m
So, E = qz/{4πε₀[√(z² + R²)]³}
E = 208.8π × 10⁻⁹ C × 1.16 m/{4π8.854 × 10⁻¹² F/m[√((1.16 m)² + (0.58 m)²)]³}
E = 242.208 × 10⁻⁹ Cm/{35.416 × 10⁻¹² F/m[√(1.3456 m² + 0.3364 m²)]³}
E = 242.208 × 10⁻⁹ Cm/35.416 × 10⁻¹² F/m[√(1.682 m²)]³}
E = 6.839 × 10³ Cm²/[1.297 m]³F
E = 6.839 × 10³ Cm²/2.182 m³F
E = 3.135 × 10³ V/m
E = 3.135 × 10³ N/C
E = 3.135 kN/C
Intrusive igneous rocks cool down from magma slowly because they form underneath the surface, that will make them have large crystals.
Extrusive igneous rocks cool down from lava rapidly because they form at the surface, so that will make them have small crystals.
If there is no friction, the force that moves the box forward horizontally must be matched by the same force.
If there is friction, then the force moving it forward = frictional force + the additional force you need to add.