Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
Answer:

Explanation:
We can use Newton's Universal Law of Gravitation to solve this problem:
., where
is acceleration due to gravity at the planet's surface,
is gravitational constant
,
is the mass of the planet, and
is the radius of the planet.
Since acceleration due to gravity is given as
, our radius should be meters. Therefore, convert
kilometers to meters:
.
Now plugging in our values, we get:
,
Solving for
:
.
Hello There!
It's a Property of matter where atoms in an object are aligned into domains