1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
11

The VLBA (Very Long Baseline Array) uses a number of individual radio telescopes to make one unit having an equivalent diameter

of about 8000 km. This radio telescope is focusing radio waves of wavelength 2.0 cm. What would have to be the diameter of the mirror of a visible-light telescope focusing light of wavelength 582 nm so that the visible-light telescope has the same resolution as the radio telescope? Give an answer in m. Pay attention to the number of significant figures.
Physics
1 answer:
Alex787 [66]3 years ago
8 0

Answer:

d₂=232.8 m

Explanation:

We know that formula for resolution given as

θres = 1.22 λ/d

Where

λ=wavelength

d=diameter

Given that resolution should be same.So we can say that

1.22 λ₁/d₁= 1.22 λ₂/d₂

λ₁/d₁= λ₂/d₂

d_2=\dfrac{\lambda _2}{\lambda _1}d_1

Given that

λ₂=582 nm

λ₁=2 cm

d₁=8000 km

d_2=\dfrac{582\times 10^{-9}\times 8000\times10^3}{0.02}\ m

d₂=232.8 m

You might be interested in
Câu 1. Trường hợp nào dưới đây không phải là vật sáng?
Marianna [84]

Answer:

A

Explanation:

A. The pencil is on the table in broad daylight

5 0
3 years ago
PLEASEE I NEED HELP FAST!!! .Study the scenario.A small container of water with a low temperature is poured into a large contain
RSB [31]

Answer:

that best describes the process is C

Explanation:

This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.

Heat absorbed by the smallest container

             Q_c = m ce (T_{f}-T₀)

Heat released by the largest container is

              Q_a = M ce (T_{i}-T_{f})

how

        Q_c = Q_a

       m (T_{f}-T₀) = M (T_{i} - T_{f})

Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.

Of the final statements, the one that best describes the process is C

since it talks about the thermal energy and the heat that is transferred in the process

8 0
3 years ago
Fifteen identical particles have various speeds: one has a speed of 2.00 m/s, two have speeds of 3.00 m/s, three have speeds 5.0
Tems11 [23]
A. Average speed is weighted mean (1 × 2 + 2 × 3 + 3 × 5 + 4 × 7 + 3 × 9 + 2 × 12.5)/15 = (2 + 6 + 15 + 28 + 27 + 25)/15 = 103/15 = 6.867 b. RMS is square root of 1/15 times sum of squares of speeds Sum of squares is 4 + 9 + 9 + 25 + 25 + 25 + 49 + 49 + 49 + 49 + 81 + 81 + 81 +156.25 + 156.25 = 848.5 
c. RMS speed = √(848.5/15) = 7.521 
Most likely the speed is the peak in the speed distribution, which is 7.
5 0
3 years ago
A projectile is launched at an angle of 36.7 degrees above the horizontal with an initial speed of 175 m/s and lands at the same
Softa [21]

Answer:

a) The maximum height reached by the projectile is 558 m.

b) The projectile was 21.3 s in the air.

Explanation:

The position and velocity of the projectile at any time "t" is given by the following vectors:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

v = (v0 · cos α, v0 · sin α + g · t)

Where:

r = position vector at time "t"

x0 = initial horizontal position

v0 = initial velocity

t = time

α = launching angle

y0 = initial vertical position

g = acceleration due to gravity (-9.80 m/s² considering the upward direction as positive).

v = velocity vector at time t

a) Notice in the figure that at maximum height the velocity vector is horizontal. That means that the y-component of the velocity (vy) at that time is 0. Using this, we can find the time at which the projectile is at maximum height:

vy = v0 · sin α + g · t

0 = 175 m/s · sin 36.7° - 9.80 m/s² · t

-  175 m/s · sin 36.7° /  - 9.80 m/s² = t

t = 10.7 s

Now, we have to find the magnitude of the y-component of the vector position at that time to obtain the maximum height (In the figure, the vector position at t = 10.7 s is r1 and its y-component is r1y).

Notice in the figure that the frame of reference is located at the launching point, so that y0 = 0.

y = y0 + v0 · t · sin α + 1/2 · g · t²

y = 175 m/s · 10.7 s · sin 36.7° - 1/2 · 9.8 m/s² · (10.7 s)²

y = 558 m

The maximum height reached by the projectile is 558 m

b) Since the motion of the projectile is parabolic and the acceleration is the same during all the trajectory, the time of flight will be twice the time it takes the projectile to reach the maximum height. Then, the time of flight of the projectile will be (2 · 10.7 s) 21.4 s. However, let´s calculate it using the equation for the position of the projectile.

We know that at final time the y-component of the vector position (r final in the figure) is 0 (because the vector is horizontal, see figure). Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

0 = 175 m/s · t · sin 36.7° - 1/2 · 9.8 m/s² · t²

0 = t (175 m/s ·  sin 36.7 - 1/2 · 9.8 m/s² · t)

0 = 175 m/s ·  sin 36.7 - 1/2 · 9.8 m/s² · t

-  175 m/s ·  sin 36.7 / -(1/2 · 9.8 m/s²) = t

t = 21.3 s

The projectile was 21.3 s in the air.

7 0
3 years ago
How fast would you have to jump off the ground in order to jump at least 10 meters in the air?
ivanzaharov [21]

Answer:

30.5

Explanation:

because you will basically have to be like flash

3 0
3 years ago
Other questions:
  • What is energy efficiency
    12·1 answer
  • Please help!
    11·2 answers
  • What is the displacement for a driver who travels 10 km to get to a point that is 4 km from his starting point?
    5·1 answer
  • How far will a car travel in 25 seconds at 10m/ min
    11·1 answer
  • At which life cycle stage are stars most stable
    11·2 answers
  • Which one of the following statements is true?
    5·1 answer
  • Which statement explains what happens to older crust during seafloor spreading?
    11·1 answer
  • The table below shows the speed of sound waves from musical sound sources at 20°C. Which conclusion can be made based on the inf
    15·2 answers
  • A soccer ball is kicked horizontally off a 25 m high cliff and lands at a distance of 40.0 m from the edge of the cliff. Determi
    11·1 answer
  • An fm radio station broadcasts at a frequency of 101. 3 mhz. What is the wavelength?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!