Answer
given,
height of Alpe d'Huez = 1100-m
time = 37.5 min
mass of the rider and his bike = 65 Kg
the metabolic power to ride = 700 W
U = m g y
U = 65 x 9.8 x 1100
U = 700700 J
since efficiency is 25%





b) 

P = 1245.68 W
Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.
Wein’s Law, search it up if you need more info
1). trajectory
2). person sitting in a chair
3). 490 meters
4). 65 m/s
5). False. The projectile's displacement, velocity, and acceleration have vertical and horizontal components, but the projectile doesn't.
6). False
7). The vertical component of a projectile doesn't change due to gravity, but the vertical components of its displacement, velocity, and acceleration do.
The vertical components do NOT equal the horizontal components.
8). Decreasing if you include the effects of air resistance. Constant if you don't. Gravity has no effect on horizontal velocity.
9). We can't see the simulation. But if the projectile doesn't have jets on it, then as it travels upward, its vertical velocity must decrease, because gravity is trying to not let it get away.
10). We can't see the simulation. But if the projectile is traveling downward, we would call that "falling", and its vertical velocity must increase, because gravity is pulling it downward.
Answer:
kagak ngerti soalnya lagi ngerjain tugas sekolah numpuk