Answer:
Hello attached below is the data found in Aleks Data tab
answer :
i) N0
ii) N0
iii) YES , pH of highest solubility = 5
Explanation:
i) For CuBr
solubility does not change with pH hence answer = NO
ii) For MgCl2
solubility does not change with pH hence the answer = NO
iii) For Ba(OH) 2
Solubility does change with pH hence the answer = YES
and the pH at which the highest solubility will occur is = 5
attached below is the reason for the answers given
The initial concentration of the unknown acid is 0.1900 M.
Explanation:
Titration is a chemical method of analysis to know the concentration and volume of the unknown chemical or analyte.
The formula for the titration is:
Macid x Vacid = Mbase x V base
The volume must be in litres. The volume is given in ml it should be divided with 1000 to obtain values in litre.
Data given are:
volume of acid= 10 ml 0.01 L
Molarity of the acid = ?
volume of the NaOH or base = 15.4 ml or 0.0154 L (equivalence point of the base)
molarity of the base = 0.1234 M
Applying the formula and putting the values, we get
Macid x 0.01 = 0.1234 x 0.0154
Macid = 0.1900 M
The weak acid is having molarity of 0.1900 M against the strong base with molarity of 0.1234M.
Explanation:
Some Rules Regarding Oxidation Numbers:
- Hydrogen has oxidation number of + 1 except in hydrides where it is -1
- Oxygen has oxidation number of -2 except in peroxides where it is -1
- Some elements have fixed oxidation numbers. E.g Halogen group elements has oxidation number of -1
- Oxidation number of a compound is the sum total of the individual elements and a neutral compound has oxidation number of 0.
A. HI
Hydrogen has oxidation of + 1
Oxidation number of I:
1 + x = 0
x = -1
B. PBr3
Br has oxidation number of - 1
Oxidation number of Pb:
x + 3 (-1) = 0
x = + 3
C. KH
Hydrogen has oxidation of + 1
Oxidation number of K:
1 + x = 0
x = -1
D. H3PO4
Hydrogen has oxidation number of + 1
Oxygen has oxidation number of -2
Oxidation number of P:
3(1) + x + 4(-2) = 0
3 + x - 8 =0
x = 5
Answer:
3.01 × 10^24 particles
Explanation:
According to Avagadro, in one mole of a substance, there are 6.02 × 10^23 atoms or particles.
Using the formula: N = n × NA
Where;
N= number of particles or atoms
n = number of moles
NA = Avagadro's constant or number
This means that for 5 moles of a substance, there will be:
5 × 6.02 × 10^23
= 30.1 × 10^23
= 3.01 × 10^24 particles