First. let's write the reaction formula: HBr +LiOH ----> LiBr + H₂O
let's get the moles of LiOH first
moles= Molarity x Liters
moles= 0.253 M x 0.01673 Liter= 0.00423 moles LiOH
using the balanced equation, you can see that 1 mol LiOH is equal to 1 mol HBr. so:
0.00423 mol LiOH = 0.00423 mol HBr
now let's find the concentration
molarity= mol/ Liters
0.00423 mol/ 0.01000 Liters= 0.423 M
Answer:
2s2 2p5
Rb < Sr< Sn< Te<I
Explanation:
Electron affinity is the ability of an atom to accept electrons to form negative ions.
Electron affinity is a periodic trend that decreases down the group but increases across the period.
This accounts for the trends observed in the answer. The atom having the electronic configuration, 2s2 2p5 must be a halogen and it exhibits the highest value of electron affinity.
Also, since electron affinity increases across the period, the electron affinities of the elements increases. Therefore, the arrangement of atoms as shown in the answer depends on increasing electron affinity.
Hgdhisybdjxfhdjgf fhcgh ftgi
Answer:
D, Li2S
Explanation:
This is because Lithium, which is in group IA of the periodic table, has a charge of +1. Sulfur will have a charge of -2 because it is in group 6A in the periodic table, which means to balance these out, there needs to be 2 lithium ions which would result in a charge of +2. With Lithium now having a charge of +2 due to having two atoms in the compound, and sulfur already having a charge of -2 as one atom, these two cancel out meaning the compound is neutral.
The number of mole will be 65.81 mole.
An ideal gas would be one for which both the overall volume of the molecules and even the forces that exist between them are so negligible as to have no influence on the behavior of something like the gas.
Number of ideal gas can be calculated by using the formula:
PV = nRT
where, p is pressure, n is number of mole, R is gas constant and T is temperature.
Given data:
V= 1750
= 1750 L
P = 125,000 p = 1.2 atm
R = 0.082 L /mole kelvin
T = 273+127 = 400 K
Now, put the value of given data in above equation.
1.23atm x 1750L = n x 0.0820atm x Liter/ mole x kelvin x 400K
n = 65.81 mole.
Therefore, the number of mole will be 65.81 mole
To know more about mole
brainly.com/question/21050624
#SPJ4