Ionic bonds are formed from the attraction of oppositely charged ions in a chemical compound
Atomic number for bromine is 35
Answer:
Because two minerals can share property's so you need more then one to tell them apart. Hope this helped! :)
Explanation:
Answer:
<u>5 moles S x (36.02 g S/mole S) = 180.1 grams of S</u>
Explanation:
The periodic table has mass units for every element that can be correlated with the number of atoms of that element. The relationship is known as Avogadro's Number. This number, 6.02x
, is nicknamed the mole, which scientists found to be a lot more catchy, and easier to write than 6.02x
. <u>The mole is correlated to the atomic mass of that element.</u> The atomic mass of sulfur, S, is 36.02 AMU, atomic mass units. <u>But it can also be read as 36.02 grams/mole.</u>
<u></u>
<u>This means that 36.02 grams of S contains 1 mole (6.02x</u>
<u>) of S atoms</u>.
<u></u>
This relationship holds for all the elements. Zinc, Zn, has an atomic mass of 65.38 AMU, so it has a "molar mass" of 65.38 grams/mole. ^5.38 grams of Zn contains 1 mole of Zn atoms.
And so on.
5.0 moles of Sulfur would therefore contain:
(5.0 moles S)*(36.02 grams/mole S) = <u>180.1 grams of S</u>
Note how the units cancel to leaves just grams. The units are extremely helpful in mole calculations to insure the correct mathematical operation is done. To find the number of moles in 70 g of S, for example, we would write:
(70g S)/(36.02 grams S/mole S) = 1.94 moles of S. [<u>Note how the units cancel to leave just moles</u>]
<u>Answer:</u> The molality of the solution is 0.1 m.
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute = 27.1 g
= Molar mass of solute = 27.1 g/mol
= Mass of solvent = 100 g
Putting values in above equation, we get:

Hence, the molality of the solution is 0.1 m.