Answer:
400 Ns
Explanation:
Impulse = Change in momentum
i.e I = ΔP
So that,
Impulse experienced by Max = Change in Max's momentum
Change in Max's momentum = m(v - u)
Where m is the mass, v is the velocity after collision, and u is the velocity before collision.
m = 100.0 kg, v = 2.0 m/s, u = 6.0 m/s
Change in Max's momentum = 100 x (2 -6)
= -400 kg m/s
The negative sign shows that the change in momentum was against his direction of motion.
Impulse experienced by Max = 400 Ns.
Thus,
Max experienced an impulse of 400 Ns as a result of the collision.
Answer:
Linear charge density (I) = Q/2πR
Explanation:
Linear charge density (I) = charge (Q) per unit length(L)
I = Q/L
For a thin ring of charge with radius R, the length will be equal to the circumference of a circle.
Circumference of a circle = 2πR
Then, the length of the thin ring of charge is 2πR
Linear charge density (I) = Q/2πR
Therefore, for a thin ring of charge of radius R, which lies in the x-y plane and is centered on the z-axis. The linear charge density, l, of the loop is given by Q/2πR
Answer:ll. Kinetic energy can be transformed into Potential energy.
And, lll. Potential energy can be transformed into Kinetic energy
Answer:
-58.876 kJ
Explanation:
m = mass of air = 1 kg
T₁ = Initial temperature = 15°C
T₂ = Final temperature = 97°C
Cp = Specific heat at constant pressure = 1.005 kJ/kgk
Cv = Specific heat at constant volume = 0.718 kJ/kgk
W = Work done
Q = Heat = 0 (since it is not mentioned we are considering adiabatic condition)
ΔU = Change in internal energy
Q = W+ΔU
⇒Q = W+mCvΔT
⇒0 = W+mCvΔT
⇒W = -mCvΔT
⇒Q = -1×0.718×(97-15)
⇒Q = -58.716 kJ