Formic acid when in water would dissociate into ions just like any acids. It would dissociate into the hydrogen ion and the formate ion. The equilibrium dissociation equation would be written as:
<span>HCOOH (aq) + H2O (l) ⇌ H+ (aq) + HCOO- (aq)
Formic acid is a weak acid which means that when in aqueous solution it does not completely dissociate into its corresponding ions. Only a certain amount that would be dissociated so in the solution there will be HCOOH, HCOO- and H+ molecules. It is also known as Methanoic acid and an important substance for the synthesis of a number of substances. It is naturally occurring in ants.</span>
Answer:
hope this helps
Explanation:
glycosidic bond
A covalent bond formed between a carbohydrate molecule and another molecule (in this case, between two monosaccharides) is known as a glycosidic bond (Figure 4). Glycosidic bonds (also called glycosidic linkages) can be of the alpha or the beta type.
Answer: The volume of 0.640 grams of
gas at Standard Temperature and Pressure (STP) is 0.449 L.
Explanation:
Given: Mass of
gas = 0.640 g
Pressure = 1.0 atm
Temperature = 273 K
As number of moles is the mass of substance divided by its molar mass.
So, moles of
(molar mass = 32.0 g/mol) is as follows.
![No. of moles = \frac{mass}{molar mass}\\= \frac{0.640 g}{32.0 g/mol}\\= 0.02 mol](https://tex.z-dn.net/?f=No.%20of%20moles%20%3D%20%5Cfrac%7Bmass%7D%7Bmolar%20mass%7D%5C%5C%3D%20%5Cfrac%7B0.640%20g%7D%7B32.0%20g%2Fmol%7D%5C%5C%3D%200.02%20mol)
Now, ideal gas equation is used to calculate the volume as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.
![PV = nRT\\1.0 atm \times V = 0.02 mol \times 0.0821 L atm/mol K \times 273 K\\V = 0.449 L](https://tex.z-dn.net/?f=PV%20%3D%20nRT%5C%5C1.0%20atm%20%5Ctimes%20V%20%3D%200.02%20mol%20%5Ctimes%200.0821%20L%20atm%2Fmol%20K%20%5Ctimes%20273%20K%5C%5CV%20%3D%200.449%20L)
Thus, we can conclude that the volume of 0.640 grams of
gas at Standard Temperature and Pressure (STP) is 0.449 L.