Answer:

Explanation:
We know, 
where, R = 0.0821 L.atm/(mol.K), T is temperature in kelvin and
is difference in sum of stoichiometric coefficient of products and reactants
Here
and T = 311 K
So, ![K_{p}=(0.0111)\times [(0.0821L.atm.mol^{-1}.K^{-1})\times 311K]^{-1}=4.35\times 10^{-4}](https://tex.z-dn.net/?f=K_%7Bp%7D%3D%280.0111%29%5Ctimes%20%5B%280.0821L.atm.mol%5E%7B-1%7D.K%5E%7B-1%7D%29%5Ctimes%20311K%5D%5E%7B-1%7D%3D4.35%5Ctimes%2010%5E%7B-4%7D)
Hence value of equilibrium constant in terms of partial pressure
is 
Answer:
C) It is the reactant that is left over after the reaction stops.
Explanation:
The excess reactant is the reactant that is left over after the reaction stops. The extent of the reaction is not determined by this reactant.
A limiting reactant is a reactant that is in short supply within a given reaction.
Such reactants determines the extent of chemical reaction.
- Limiting reactants are used up in a chemical reaction.
- The excess reactants remains unchanged after the reaction.
Answer:
The amount of molecules in CH4, also known about methane is simply 0.85 * 6.02210 * 10^23 This amounts to about 5.1 * 10^23