Answer:
Balancing Strategies: To balance this reaction it is best to get the Oxygen atoms on the reactant side of the equation to an even number. Once this is done everything else falls into place. Put a "2" in front of the NaClO3. Change the coefficient in front of the O2.
Answer:
aa
Explanation:
There is a lowercase a on both sides.
Answer:
2.41065 grams
Explanation:
Here we have to apply molarity, particularly in reference to the equation molarity = moles of solute / volume. I would like to rewrite this formula, but with respect to the units - grams = moles / Liters,
We can use molarity to determine the number of moles. After doing so, we can determine the mass of the solute with respect to the formula moles = mass / molar mass. The molar mass of NaCl is 58.44 grams.
_______________________________________________________
275 mL = 0.275 L,
Number of Moles of NaCl = 0.150 * 0.275 = 0.04125 moles,
Mass = 0.04125 * 58.44 = 2.41065 grams,
Solution - Mass of NaCl = 2.41065 grams
<u><em>Hope that helps!</em></u>
I think the answer will be b cuh
Balance the chemical equation for the chemical reaction.
Convert the given information into moles.
Use stoichiometry for each individual reactant to find the mass of product produced.
The reactant that produces a lesser amount of product is the limiting reagent.
The reactant that produces a larger amount of product is the excess reagent.
To find the amount of remaining excess reactant, subtract the mass of excess reagent consumed from the total mass of excess reagent given.