Answer:
a) 1450watts
b) 564watts
c) 1.11
Explanation:
Power consumed = IV
I is the current rating
V is the operating voltage
If a blow-dryer and a vacuum cleaner each operate with a voltage of 120 V and the current rating of the blow-dryer is 12 A, while that of the vacuum cleaner is 4.7 A then their individual power rating is calculated thus;
a) For blow-dryer
Operating voltage = 120V
Its current rating = 12A
Power consumed = IV
= 120×12
= 1440watts
b) For vacuum cleaner:
Operating voltage is the same as that of blow dryer = 120V
Its current rating = 4.7A
Power consumed = IV
= 120×4.7
= 564watts
c) Energy used = Power consumed × time taken
Energy used = Power × time
Energy used by blow dryer = 1440×20×60
= 1,728,000Joules
Energy used up by vacuum cleaner = 564×46×60
= 564×2760
= 1,556,640Joules
Ratio of the energy used by the blow-dryer in 20 minutes to the energy used by the vacuum cleaner in 46 minutes will be 1,728,000/1,556,640 = 1.11
Answer:
Nerve and muscle function and fluid balance
Explanation:
:)
Answer:
19.95 J
Explanation:
The center of mass of the ladder is initially at a height of:

The center of mass of the ladder ends at a height of:
=L/2
So, the work done is equal to the change in potential energy which is:
W = PE = 
now 
therefore
W = [mgL/2]×[1 - sin(theta)]
W = [(7.30)(9.81)(2.50)/2]×[1-sin(51°)]
solving this we get
W = 19.95 J
Answer: the amount of mass is oscillating is 34.8 kg
Explanation:
Given that;
amplitude A = 20.0 cm
time t = 10 s
amplitude decreases x = 15.0 cm
damping coefficient b = 2.00 N.s/m
amount of mass is oscillating = ?
we know that; amplitude can be expressed as;
x = Ae^-(∝t)
we substitute
15 = 20e^-∝(10)
∝ = 0.02877 s⁻¹
Hence mass m will be;
m = b/2∝
we substitute
m = (2 N.s/m) / ( 2 × 0.02877 s⁻¹)
m = 34.8 kg
Therefore the amount of mass is oscillating is 34.8 kg
Answer:
a) Impulse(J)=40.04 kg.m/s
b)F=2566.66 N
Explanation:
Given that

We know that impulse(J) impulse is a vector quantity

We know that P=mV
So
Now by putting the values
J=1.3(9.8-(-21))
So impulse(J)=40.04 kg.m/s
Force is given as

or we can say that

So 
F=2566.66 N