Answer:
C) According to the second law of thermodynamics, not all energy from the burnt fuel is used to do work on the piston. It also produces heat which warms other parts of the car.
Explanation:
A) According to the fourth law of thermodynamics, the temperature of the other parts of the car increases due to the coolant used for the engine.
B) According to the first law of thermodynamics, the hood of the car heats up using heat from the surroundings in-order to achieve thermal equilibrium with the engine.
C) According to the second law of thermodynamics, not all energy from the burnt fuel is used to do work on the piston. It also produces heat which warms other parts of the car.
D) According to the third law of thermodynamics, the increase in the velocity of the car changes the entropy of the tires. To balance this change, the temperature of the other parts is increased.
The correct answer that would best complete the given statement above would be the second option. A screw is an inclined plane wrapped around a cylinder. <span>The efficiency of a screw is low because there is more input than output. In other words, it is because of friction. Hope this answer helps.</span>
Answer:
The ice melts mass is:

Explanation:
Kinetic Energy



Heat gained by ice= mass(g) x 80 cal
( 1 cal = 4.184 *10^7er or g cm^2/ sec^2)
Assuming no loss in heat, in the motion so both continue with temperature 0~C
To find so the mass (gm) of ice melted


Answer:
Explanation:
When the central shaft rotates , the seat along with passenger also rotates . Their rotation requires a centripetal force of mw²R where m is mass of the passenger and w is the angular velocity and R is radius of the circle in which the passenger rotates.
This force is provided by a component of T , the tension in the rope from which the passenger hangs . If θ be the angle the rope makes with horizontal ,
T cos θ will provide the centripetal force . So
Tcosθ = mw²R
Tsinθ component will balance the weight .
Tsinθ = mg
Dividing the two equation
Tanθ = 
Hence for a given w , θ depends upon g or weight .
Step 1 : Get your supply list together
Step 2 : Pick what model you want to do
Step 3 : Ask for a partner
Step 4 : Complete the model and take your time.
Step 5 : Read the directions carefully