1.
-Water levels are dangerously high for wildlife and humans.
-Animals seem to be lost, like the cow and the sheep especially.
2.
-There are not many trees near the water, meaning less areas for wildlife to live.
-There is not much wildlife in general.
Inferences
1. The wildlife shown will move relocate and adapt to another area.
2. Industry — emissions are visible in top left— will continue to hurt the environment. CO2 emissions will increase.
Good luck!
To solve this problem, the dilution equation (M1 x V1 = M2 X V2) must be used. The given values in the problem are M1= 12.0 M, V1= 30 mL, and M2= 0.160 M. To solve for V2,
V2=M1xV1/M2
V2= (12x30)/0.16
V2= 2,250 mL.
The correct answer is 2.25 L.
Answer:
- The abundance of 107Ag is 51.5%.
- The abundance of 109Ag is 48.5%.
Explanation:
The <em>average atomic mass</em> of silver can be expressed as:
107.87 = 106.90 * A1 + 108.90 * A2
Where A1 is the abundance of 107Ag and A2 of 109Ag.
Assuming those two isotopes are the only one stables, we can use the equation:
A1 + A2 = 1.0
So now we have a system of two equations with two unknowns, and what's left is algebra.
First we<u> use the second equation to express A1 in terms of A2</u>:
A1 = 1.0 - A2
We <u>replace A1 in the first equation</u>:
107.87 = 106.90 * A1 + 108.90 * A2
107.87 = 106.90 * (1.0-A2) + 108.90 * A2
107.87 = 106.90 - 106.90*A2 + 108.90*A2
107.87 = 106.90 + 2*A2
2*A2 = 0.97
A2 = 0.485
So the abundance of 109Ag is (0.485*100%) 48.5%.
We <u>use the value of A2 to calculate A1 in the second equation</u>:
A1 + A2 = 1.0
A1 + 0.485 = 1.0
A1 = 0.515
So the abundance of 107Ag is 51.5%.
Answer:
misteri Cell ini quest ia half-life of beauty of misteri best, of Cell can't answer =
Explanation:
![\sqrt[ \geqslant { { | \geqslant | \geqslant \sqrt[ \gamma \% log_{ \tan( \sqrt[ < \pi \sqrt[ | \geqslant \sqrt[ < \leqslant |x| ]{y} | \times \frac{?}{?} ]{?} ]{?} ) }(?) ]{?} | | }^{2} }^{?} ]{ \sqrt[ < \gamma log_{ \frac{ | \geqslant y \sqrt[ |x \sqrt{ |?| } | ]{?} | }{?} }(?) ]{?} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B%20%5Cgeqslant%20%20%7B%20%7B%20%7C%20%5Cgeqslant%20%20%7C%20%5Cgeqslant%20%20%5Csqrt%5B%20%5Cgamma%20%5C%25%20log_%7B%20%5Ctan%28%20%5Csqrt%5B%20%3C%20%5Cpi%20%5Csqrt%5B%20%7C%20%5Cgeqslant%20%20%5Csqrt%5B%20%3C%20%20%5Cleqslant%20%20%7Cx%7C%20%5D%7By%7D%20%7C%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20%5D%7B%3F%7D%20%5D%7B%3F%7D%20%29%20%7D%28%3F%29%20%5D%7B%3F%7D%20%7C%20%7C%20%7D%5E%7B2%7D%20%7D%5E%7B%3F%7D%20%5D%7B%20%5Csqrt%5B%20%3C%20%20%5Cgamma%20%20log_%7B%20%5Cfrac%7B%20%7C%20%5Cgeqslant%20y%20%5Csqrt%5B%20%7Cx%20%5Csqrt%7B%20%7C%3F%7C%20%7D%20%7C%20%5D%7B%3F%7D%20%7C%20%7D%7B%3F%7D%20%7D%28%3F%29%20%5D%7B%3F%7D%20%7D%20)