Answer:
Option E is correct. none of the above is correct
Explanation:
Step 1: Data given
Solid Iron (III) = Fe^3+
iron (III) oxide = Fe2O3
Molar mass Fe = 55.845 g/mol
Molar mass Fe2O3 = 159.69 g/mol
Step 2: The balanced equation:
4Fe + 3O2 → 2Fe2O3
4 moles of iron will need 2 moles of oxygen gas to fully react
⇒ This is false 4 moles of iron will need 3 moles of oxygen gas to fully react
B.12 moles of iron, if reacted completely, can produce 8 moles of iron (III) oxide.
⇒ This is false: When 12 moles of iron completely react, we can produce 12/2 = 6 moles of Fe2O3
C.9 moles of oxygen can produce 9 moles of Iron (III) oxide
⇒ This is false; 9 moles of O2 can produce 6 moles of Fe2O3
D.6 moles of oxygen can react completely to produce 6 moles of iron (III) oxide.
⇒ This is false 6 moles of O2 will react completely to produce 4 moles of Fe2O3
E.none of the above
Divide mass by the volume to find density.
Answer:
56.82 Kg
Explanation:
Given data:
1 Kg = 2.20 lbs
Number of kilogram in 125 lbs = ?
Solution:
lbs is used for pound. lb is abbreviation of libra. It is Latin word meaning balance.
Both kilogram and pounds are units of mass. Pound is smaller unit than kilogram.
one Kg = 2.20 lbs
Number of kg in 125 lbs:
125 lbs × 1 Kg/2.20 lbs
125 lbs.Kg/2.20 lbs
56.82 Kg
<span>The best answer is B. ICl experiences induced dipole-induced dipole interactions. Both iodine and chlorine belongs to the same group of the periodic table. Electronegativity decreases as you go down a group therefore Cl will have a greater attraction with the bond it forms with another atom. Dipole-dipole interactions form between I and Cl. For the Br2 molecule, no dipole occurs because they are two identical atoms. Therefore we will be expecting ICl will have a higher boiling point due to higher binding energy it forms.</span>
methanol:
1 mole CH3 OH --> produces --> 1 mole CO2
1 mole CO2 has a molar mass of 44.01 gh/mole
your set up is:
(44.01 g CO2) / -726.5kJ = 0.06058g
your answer 0.06058 grams of CO2 produced per kJ released.