⭐Hola User____________
⭐Here is Your Answer...!!!
⭐____________________
SOLUTIONS
↪1) Aqueous Solution
↪2) Solvent
↪3) Solute
_______________________
⚓〽⚓
The answer would be 200000 J. the equation for kinetic energy is 1/2 mass times velocity squared. 1/2 of 1,000 is 500. and 20*20 is 400. So, multiply 400 by 500, and that gives you your answer,
Answer: I am actually studying about Stars, so I got you.
3. As the temperature of a star Increases, it's luminosity increases.
As the temperature of a star decreases, it's luminosity decreases.
4. Hot and Bright. The bigger the star, the hotter it gets is from what I learned.
Answer:
May I assume "ethanol acid is just ethanol (it has one slightly acidic H atom). If so, the molar mass is 46.02 g/mole.
Explanation:
We have 30 cm^3 [30 ml] of 1.0 M (1 mole/liter) [1 dm³ = 1 liter].
That is 1 mole/liter. 30 ml would contain (0.030 liter)*(1 mole/1 liter) = 0.03 moles.
Answer:
c = 0.898 J/g.°C
Explanation:
1) Given data:
Mass of water = 23.0 g
Initial temperature = 25.4°C
Final temperature = 42.8° C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Specific heat capacity of water is 4.18 J/g°C
ΔT = 42.8°C - 25.4°C
ΔT = 17.4°C
Q = 23.0 g × × 4.18 J/g°C × 17.4°C
Q = 1672.84 j
2) Given data:
Mass of metal = 120.7 g
Initial temperature = 90.5°C
Final temperature = 25.7 ° C
Heat released = 7020 J
Specific heat capacity of metal = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.7°C - 90.5°C
ΔT = -64.8°C
7020 J = 120.7 g × c × -64.8°C
7020 J = -7821.36 g.°C × c
c = 7020 J / -7821.36 g.°C
c = 0.898 J/g.°C
Negative sign shows heat is released.