Answer: why did the chicken cross the road
Explanation: to get to the other side
Answer:
the maximum possible constant speed is 8 m/sec
Explanation:
from the image, Given that
r(t) = (2t, t²,t²/3), -5 ≤ t ≤ 5
Given that the curvature K(t) = 2 / ( t² + 2)²
note that t² + 2 ≥ 2
(t² + 2)² ≥ 4
1 / (t² + 2)² ≤ 1/4
2 / (t² + 2)² ≤ 1/2
Also note that k(0) = 1/2
The normal component of acceleration satisfies aN = kv²
where v = ║v(t)║is the speed of the roller coaster.
The maximum possible normal component of acceleration is 32
so, aN ≤ 32 every where on the track
aN = kv² ≤ 1/2v² ≤ 32
v² ≤ 64
Therefore, the maximum possible constant speed is 8 m/sec
Answer:
0.3950m
Explanation:
Use conservation of angular momentum:
Let L be the angular momentum(a vector).
We know that:
and that the two masses have the same radius:

Hence, the weights are 0.3950m away .
Answer:
The maximum static frictional force is 40N.
Explanation:
When an object of mass M is on a surface with a coefficient of static friction μ, there is a minimum force that you need to apply to the object in order to "break" the coefficient of static friction and be able to move the object (Called the threshold of motion, once the object is moving we have a coefficient of kinetic friction, which is smaller than the one for static friction).
This coefficient defines the maximum static friction force that we can have.
So if we apply a small force and we start to increase it, the static frictional force will be equal to our force until it reaches its maximum, and then we can move the object and now we will have frictional force.
In this case, we know that we apply a force of 40N and the object just starts to move.
Then we can assume that we are just at the point of transition between static frictional force and kinetic frictional force (the threshold of motion), thus, 40 N is the maximum of the static frictional force.