A flat plate maintained at a temperature of 80°C experiences a flow of atmospheric air at 0°C. If the temperature gradient at th
e plate’s surface at a given downstream-stream location is 43°C/mm, what is the local heat transfer coefficient?
1 answer:
Answer:
h =12.9 w/m2 k
Explanation:
we know that thermal conductivity of air K at 0 degree celcius = 0.024 w/mk
T_S = 80 Degree celcius
temperature gradient = -43 degree C/mm = - 43*1000 / m
by fourier law


q = 1032 watt/m2
we know that from newton's law
q = h (T_s - T_∞)
1032 = h*(80 - 0)
h =12.9 w/m2 k
You might be interested in
Answer:
8.158 Kilograms Force
Explanation:
Answer:
the capacitor voltage is V = 20 V
Explanation:
Given,
Capacitance of the capacitor = 2.0 μF
energy stored = 200 W
time (t) =2.0 μs
Capacitor voltage = ?



we know,




V = 20 V
so , the capacitor voltage is V = 20 V
1.7 Btu
1 watt = 3.41214 Btu/h
1watt * 1h = 3.41214 Btu/h * h
1 = 3.41214 Btu/ (watt*h)/
0.5 watt * h = 0.5 watt*h * 3.41214 Btu/(watt*h) = 1.706 Btu
Answer:
Explanation:
6000 km