1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
3 years ago
5

Providing subgoals for individuals helps them solve problems more quickly. True or False

Physics
2 answers:
zvonat [6]3 years ago
7 0

Answer: The given statement is true.

Explanation:

A small goal which is a part of and helpful in accomplishing a large goal is known as a subgoal.

Basically, a subgoal  is a step-by-step process in which a bigger problem or aim is broken down into small manageable pieces that will lead us towards solving or accomplishing of goal.

For example, a student wants to achieve first position in his class. So, for this he started his preparation from the starting of the session and not a day or week before the exams.

Hence, we can conclude that the statement, providing subgoals for individuals helps them solve problems more quickly, is true.

trasher [3.6K]3 years ago
3 0
True because they can focus on small goals to eventually solve their big problems.
You might be interested in
When a fixed amount of ideal gas goes through an isobaric expansion A) its internal (thermal) energy does not change.B) the gas
Bingel [31]
<h2>Answer: its temperature must increase.</h2>

Explanation:

In an isobaric process the pressure remains constant, which means the initial pressure and the final pressure will be the same.

In addition, during this thermodynamic process, the volume of the ideal gas expands or contracts in such a way that the variation of pressure \Delta P is neutralized.

Now, according to the First law of Thermodynamics that establishes the conservation of energy:

\Delta U=\Delta Q-\Delta W   (1)

Where:

\Delta U is the internal energy

\Delta Q is the heat transferred

\Delta W is the work

Now, for an isobaric process:

\Delta W=P\Delta V    (2)

Where:

P is the pressure (<u>always positive</u>)

\Delta V is the volume variation of the gas

<u />

<u>Here we have two possible results:</u>

-If the gas expands (positive \Delta V), the work is positive.

-If the gas compresses (negative \Delta V), the work is negative.

In this case we are talking about the first result (work is positive).

Then, according to the above, equation (1) can be written as follows:

\Delta U=\Delta Q - P\Delta V   (3)

Clearing \Delta Q:

\Delta Q=\Delta U+P \Delta V    (4)

Then, for an ideal gas in an isobaric process, part of the heat (Q) added to the system will be used to do work (positive in this case) and the other part <u>will increase the internal energy</u>, hence <u>the temperature will increase as well.</u>

7 0
3 years ago
Which of the following biomes might be found at a latitude of 33° South?
cupoosta [38]
The answer is going be desert. 
5 0
3 years ago
"My distance to the center of the earth is about 4000 miles when I am on the surface. If I go to a height of 8000 miles above th
lord [1]

Given,

Distance from the surface to the center of the earth, d=4000 miles

Distance from the center to you at a height of 8000 miles, a= 8000+4000=12000 miles

The gravitational force acting on a person at the surface is equal to his weight.

From Newton's Universal Law of Gravitation, the gravitational force is

F=\frac{G\times M\times m}{r^2}

Where G is the gravitational constant, M is the mass of the earth, m is the mass of the object/person, r is the distance between the center of the earth and the object/person

At the surface, this force is equal to the weight of the person, W=mg

i.e.

F_s=\frac{G\times M\times m}{d^2}=W

On substituting the of d,

W=\frac{\text{GMm}}{4000^2}

At a height of 8000 miles from the surface, the gravitational force is equal to,

F_a=\frac{GMm}{12000^2}

On dividing the above two equations,

\frac{F_a}{W}=\frac{4000^2^{}}{12000^2}=\frac{1}{9}

Therefore,

F_a=\frac{1}{9}W

Therefore at a height of 8000 miles above the surface of the earth, the force of gravity becomes 1/9 time your weight.

5 0
1 year ago
The table shows data for the planet Uranus. A 2 column table with 4 rows. The first column is labeled Quantity with entries, Esc
prohojiy [21]

Answer:

The answer is 218

Explanation:

Weight = mass * gravitational acceleration

weight is represented by F

F = 25kg (8.7)

(I'm pretty sure that you don't have to include the meters per second/per second thing)

4 0
3 years ago
The force of air resistance acts to oppose the motion of an object moving through the air. A ball is thrown upward and eventuall
ozzi

Answer:

For a (1) net force will be greater than the weight of the ball

For b (2) net force will be lesser than the weight of the ball

Explanation:

For (a):

For a linear motion of a system, one must have to understand, according to Newtons first law of motion, which is also known as law of inertia, a body which is at motion will continue to move or a body at rest will continue to rest until an external force is applied to it. In the given case, when ball goes upward, one thing is for sure, the net force is greater than the weight of the ball, because three forces are applied during upward motion:

gravity or weight which is pulling the ball downward,

air resistance, which is also acting downward as it is creating friction between ball and air molecules, so creating hindrance in upward motion

External force to throw ball upward

So

Net Force = Upward force - Air friction - Weight

Since ball is going upward, so net force is greater than both weight and air friction which are pulling ball downward.

For (b):

For a linear motion of a system, one must have to understand, according to Newtons first law of motion, which is also known as law of inertia, a body which is at motion will continue to move or a body at rest will continue to rest until an external force is applied to it. In the given case, when ball goes downward, one thing is for sure, the net force is lesser than the weight of the ball, because two forces are applied during downward motion:

gravity or weight which is pulling the ball downward,

air resistance, which is acting upward as it is creating friction between ball and air molecules, so creating hindrance in downward motion

So

Net Force = Weight - Air friction

Since ball is going downward, so weight is greater than net force which is in this case is air friction which is pulling ball upward.

4 0
3 years ago
Other questions:
  • Why the substance on the periodic talbe classified together​
    13·2 answers
  • (URGENT 75 points)You are given two same party balloons (one filled with helium and the
    9·1 answer
  • 2. A car going 35 km/hr takes 23.0 s to come to a stop at the red light. What is it's
    5·1 answer
  • An uncovered pot of soup is simmering on a stove, and there are water droplets on the wall above the back of the stove. what seq
    5·2 answers
  • If a 2-kg ball is thrown through the air at 20 m/s what is the momentum of the ball?
    14·1 answer
  • Which statements describe the image produced by a concave lens?check all that apply.
    14·2 answers
  • What equation gives the position at a specific time for an object with constant acceleration?
    6·1 answer
  • A fly is on hanging on the edge of one of the blades. Neglecting the width of the fan's motor,
    15·1 answer
  • What is the acceleration of an object that begins at 2 meters per second and after 5 minutes is travelling at 1 meter per second
    9·1 answer
  • Which is TRUE about static electricity?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!