Answer:
option c) 2 is the right answer
Answer:
2. ( b ) zero
3. ( c ) 10 s
4. Uniform then decreasing
Explanation:
2.
Since the motion is uniform, initial and final velocity will be 0, hence acceleration will be zero.
3.
Initial velocity ( u ) = 5 m/s
Final velocity ( v ) = 35 m/s
Acceleration ( a ) 3 m/s^2
To find : Time ( t )
Formula : -
t = v - u / a
= 35 - 5 / 3
= 30 / 3
t = 10 s
Answer:
Time elapsed
Explanation:
Acceleration is a vector quantity. It is defined as:

where
v is the final velocity
u is the initial velocity
t is the time elapsed
Acceleration is measured in meters per second squared (m/s^2). It must be noticed that acceleration is a vector, so it also has a direction. In particular:
- when acceleration is negative, it means that the object is slowing down, so acceleration is in opposite direction to the velocity
- when acceleration is positive, it means that the object is speeding up, so acceleration is in the same direction as the velocity
At the highest point of the trajectory the vertical component will have its zero velocity, and the descent caused by the force of gravity will begin.
Since the ball is thrown with a certain speed, the vertical component reaches its highest point (upwards), until returning to the receiver who will receive the ball with the same vertical component but in the opposite direction (downwards).
Therefore the vertical component will have its highest value at launch.
Answer:
C , E , A , D , B
Explanation:
We evaluate the accelerations for each case, using the formula: a = (vf - vi) / t
A) a = (10.3 - 0.5 ) / 1 = 9.8 m/s^2 --> magnitude: 9.8 m/s^2
B) a = (0 - 20) / 1 = - 20 m/s^2 --> magnitude : 20 m/s^2
C) a = (0.02 - 0.004) / 1 = 0.016 m/s^2 --> magnitude : 0.016 m/s^2
D) a = (4.3 - 0) / 0.4 = 10.75 m/s^2 --> magnitude : 10.75 m/s^2
E) a = (1 - 2) / 8.3 = - 0.12 m/s^2 --> magnitude: 0.12 m/s^2
Then, comparing magnitudes from least to greatest:
C , E , A , D , B