Answer:
Explanation:
In this case, law of conservation of energy will be implemented. It states that "the energy of the system remains conserved until or unless some external force act on it. Energy of the system may went through the conversion process like kinetic energy into potential and potential into kinetic energy.But their total always remain the same in conserved systems."
Given data:
Height of tower = 10.0 m
Depth of the pool = 3.00 cm
Mass of person = 61.0 kg
Solution:
Initial energy = Final energy

As the person was at height initially so it has the potential energy only.



Lets find out the magnitude of the force that the water is exerting on the diver.
W =ΔK.E


F = 1992.67 N
<em></em>
Answer:
<u><em>The aufbau principle</em></u>
<u />
<u><em>The Pauli exclusion principle</em></u>
<u><em></em></u>
<u><em>Hund's rule of maximum multiplicity</em></u>
Explanation:
<u><em>The aufbau principle:</em></u>
<em></em>
The fundamental electronic configuration is achieved by placing the electrons one by one in the different orbitals available for the atom, which are arranged in increasing order of energy.
<u><em>The Pauli exclusion principle:</em></u>
<em></em>
Two electrons of the same atom cannot have their four equal quantum numbers. Because each orbital is defined by the quantum numbers n, l, and m, there are only two possibilities ms = -1/2 and ms = +1/2, which physically reflects that each orbital can contain a maximum of two electrons, having opposite spins
<u><em>Hund's rule of maximum multiplicity:</em></u>
This rule says that when there are several electrons occupying degenerate orbitals, of equal energy, they will do so in different orbitals and with parallel spins, whenever this is possible. Because electrons repel each other, the minimum energy configuration is one that has electrons as far away as possible from each other, and that is why they are distributed separately before two electrons occupy the same orbital.
Answer:
b. Constant magnitude, but varying direction, perpendicular to the equipotential.
Explanation:
As we know that the relation between electric field and electric potential is given as

here if we say that potential is constant because electric field sensor is moving along equi-potential line.
Then we will say
V = constant
so we have

so electric field will remain constant always in magnitude and always remains perpendicular to the surface
so we have
b. Constant magnitude, but varying direction, perpendicular to the equipotential.
Answer:
The height of the image is, h' = 6.0 cm
The image is erect.
Explanation:
Given data,
The object distance, u = -5 cm
The focal length of convex lens, f = 10 cm
The object height, h = 3 cm
The lens formula,



v = -10 cm
The magnification factor of lens

m = 2



h' = 6 cm
The height of the image is, h' = 6 cm
The image is erect.