the car travels 34 mi in one hour.
then, in 6 hours car travels
34 x 6 mi
= 204 mi
Answer:The correct options are:
1. A system is a group of objects analyzed as one unit.
2. Energy that moves across system boundaries is conserved.
Explanation:
A system is defined as group of interrelated or interacting items existing as a single unit or a whole to achieve a specific objective.Energy lost by the system is equal to the energy gained by the surroundings.
Two statements are true about a system:
- A system is a group of objects analyzed as one unit.
- Energy that moves across system boundaries is conserved.
Answer:
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Explanation:
For this exercise we must use conservation of energy
the electric potential energy is
U =
for the proton at x = -1 m
U₁ =
for the electron at x = 1 m
U₂ =
starting point.
Em₀ = K + U₁ + U₂
Em₀ =
final point
Em_f =
energy is conserved
Em₀ = Em_f
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(
)
we substitute the values
½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [
) = 9 109 (1.6 10-19) ²(
)
2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ (
)
2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷
r₂² -1 = (4.443 10⁸)⁻¹
r2 =
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
The amount of power change if less work is done in more time"then the amount of power will decrease".
<u>Option: B</u>
<u>Explanation:</u>
The rate of performing any work or activity by transferring amount of energy per unit time is understood as power. The unit of power is watt
Here this equation showcase that power is directly proportional to the work but dependent upon time as time is inversely proportional to the power i.e as time increases power decreases and vice versa.
This can be understood from an instance, on moving a load up a flight of stairs, the similar amount of work is done, no matter how heavy but when the work is done in a shorter period of time more power is required.