3. Kinetic energy
4. Potential energy
5. Kinetic energy because it’s moving towards the waterfall otherwise there wouldn’t be a waterfall.
6. Kinetic energy
7. Kinetic energy
8. Potential energy
9. Potential energy
10. Kinetic energy
Answer:
Impulse = Average force x time of contact
Explanation:
Impulsive force is a force which is very large but applied on a body for a very small duration of time.
Impulse is given by the change in momentum of the body.
Impulse = Average force x small time interval
When padding is there, the time interval of contact is large and thus, the force exerted by the body is small.
So, when a person falls on the tile floor, there is no compression and thus, the time of contact is very small and thus the impulsive force is very large, due to which the body may damage.
So, when a person falls on the carpeted floor, there is a compression and thus, the time of contact is comparatively large and thus the impulsive force is small, due to which the body may safe.
Answer:
The ball has no momentum
Explanation:
The given parameters are;
The mass of the ball = 5 kg
The velocity of the ball = 0 (The ball is sitting on the floor without moving)
The momentum of the ball = The mass of the ball × Velocity of the ball
Therefore, the momentum of the ball = 5 kg × 0 m/s = 0
The momentum of the ball is zero, the ball has no momentum.
Answer:
Answer is: c. It must lose two electrons and become an ion.
Magnesium (Mg) is metal from 2. group of Periodic table of elements and has low ionisation energy and electronegativity, which means it easily lose valence electons (two valence electrons).
Magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.
Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.
Explanation:
Answer:
He can return to the spacecraft by sacrificing some of the tools employing the principle of conservation of momentum.
Explanation:
By carefully evaluating his direction back to the ship, the astronaut can throw some of his tools in the opposite direction to that. On throwing those tools of a certain mass, they travel at a certain velocity giving him velocity in the form of recoil in the opposite direction of the velocity of the tools. This is same as a gun and bullet recoil momentum conservation. It is also the principle on which the operational principles of their maneuvering unit is designed.