The position vector can be
transcribed as:
A<span> = 6 i + y j
</span>
i <span>points in the x-direction and j points
in the y-direction.</span>
The magnitude of the
vector is its dot product with itself:
<span>|A|2 = A·A</span>
<span>102 = (6 i +
y j)•(6 i+ y j)
Note that i•j = 0, and i•i = j•j =
1 </span>
<span>100 = 36 + y2
</span>
<span>64 = y2</span>
<span>get the square root of 64 = 8</span>
<span>The vertical component of the vector is 8 cm.</span>
Answer:
D.
Explanation:
To solve the exercise it is necessary to apply the concepts related to the Magnetic Field described by Faraday.
The magnetic field is given by the equation:

Where,
Permeability constant
d = diameter
I = Current
For the given problem we have a change in the diameter, twice that of the initial experiment, therefore we define that:


The ratio of change between the two is given by:




Therefore the correct answer is D.
The direction of motion of the charge
The wavelength of the light decreases as it enters into the medium with the greater index of refraction. The wavelength of the light remains constant as it transitions between materials.