Answer:
<em>The second ball has four times as much kinetic energy as the first ball.</em>
Explanation:
<u>Kinetic Energy
</u>
Is the type of energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:

Where:
m = mass of the object
v = speed at which the object moves
The kinetic energy is expressed in Joules (J)
Two tennis balls have the same mass m and are served at speeds v1=30 m/s and v2=60 m/s.
The kinetic energy of the first ball is:



The kinetic energy of the second ball is:



Being m the same for both balls, the second ball has more kinetic energy than the first ball.
To find out how much, we find the ratio:

Simplifying:

The second ball has four times as much kinetic energy as the first ball.
Answer:
Periodic.
Explanation:
Electromagnetic waves is a propagating medium used in all communications device to transmit data (messages) from the device of the sender to the device of the receiver.
Generally, the most commonly used electromagnetic wave technology in telecommunications is radio waves.
Radio waves can be defined as an electromagnetic wave that has its frequency ranging from 30 GHz to 300 GHz and its wavelength between 1mm and 3000m. Therefore, radio waves are a series of repetitive valleys and peaks that are typically characterized of having the longest wavelength in the electromagnetic spectrum.
Basically, as a result of radio waves having long wavelengths, they are mainly used in long-distance communications such as the carriage and transmission of data.
Generally, a fixed speed is used for the propagation of traveling waves and this speed is usually denoted with the variable "v" or sometimes "c."
Furthermore, if the waveform of a traveling wave is repeated every time at specific intervals T, it is referred to as periodic wave.
Mathematically, the period of a traveling wave is given by the formula;

Where;
T is the time measured in seconds.
Answer:
The maximum kinetic energy is 100 j.
Explanation:
<h3>The kinetic energy = (potential energy) + (kinetic energy) and the potential energy of 0 J implying its kinetic energy is 100 J, which is its maximum.
</h3>
<span>In the labeled portion of the curve ,you use the heat of vaporization to calculate the heat absorbed in the 4th portion. It is indicated in the picture that it is the region where vaporization occurs, that is why you need to consider this portion to calculate.</span>